

Velammal College of Engineering and Technology, Madurai

Department of Computer Science and Engineering

B.E CSE -

CS6712 – Grid and Cloud Computing

ANNA UNIVERSITY, CHENNAI

Velammal College of Engineering and Technology, Madurai

Department of Computer Science and Engineering

Regulation 2013

- IV YEAR - VII SEMESTER

Grid and Cloud Computing Lab

Manual

ANNA UNIVERSITY, CHENNAI-600025

Velammal College of Engineering and Technology, Madurai-09.

Department of Computer Science and Engineering

Lab

Grid and Cloud Computing Lab-Manual

2

Table of Contents

Sl.No. Description Page No.

1. Objective and outcome of the course 3

2. Syllabus of the course 4

3. Pre requisite of the course 5

4. Requirements 6

5. Instructions for Assessment 7

6. Ex.No.1 : Calculator Web service 8

7. Ex.No.2 : OGSA Compliant Web Service 14

8. Ex.No.3 : Grid Service using Apache 36

9. Ex.No.4 : Applications on Java or C/C++ Grid APIs 48

10. Ex.No.5 : Secure Web Service 52

11. Ex.No.6 : Running Virtual Machine of Differnt Configuration 68

12. Ex.No.7: Virtual Machine to Virtual Box 71

13. Ex.No.8 : Installing C Compiler on Virtual Machine 74

14. Ex.No.9 : Virtal Machine Migration 77

15. Ex.No.10 : Installing Storage Controller 82

16. Ex.No.11 : Hadoop- WordCount using Map and Reduce 85

17 Ex.No.12: Mounting a Node in Hadoop using FUSE 92

Grid and Cloud Computing Lab-Manual

3

Objective and Outcome of the Course

The student should be made to:

 Be exposed to tool kits for grid and cloud environment.
 Be familiar with developing web services/Applications in grid framework
 Learn to run virtual machines of different configuration.
 Learn to use Hadoop

Upon successful completion of this course, students will be able to:

CO1: Develop web services and portlet application [K3]
CO2: Build applications using REST API [K3]
CO3: Develop application with security mechanisms [K3]
CO4: Demonstrate the virtualization concepts in cloud environment [K3]
CO5: Implement a single node cluster environment and map reduce concept in
Hadoop framework [K3]

Grid and Cloud Computing Lab-Manual

4

Syllabus

GRID COMPUTING LAB:

1. Develop a new Web Service for Calculator.
2. Develop new OGSA-compliant Web Service.
3. Using Apache Axis develop a Grid Service.
4. Develop applications using Java or C/C++ Grid APIs
5. Develop secured applications using basic security mechanisms available in

Globus Toolkit.
6. Develop a Grid portal, where user can submit a job and get the result. Implement

it with and without GRAM concept.

CLOUD COMPUTING LAB:

1. Find procedure to run the virtual machine of different configuration. Check how
many virtual machines can be utilized at particular time.

2. Find procedure to attach virtual block to the virtual machine and check whether
it holds the data even after the release of the virtual machine.

3. Install a C compiler in the virtual machine and execute a sample program.
4. Show the virtual machine migration based on the certain condition from one

node to the other.
5. Find procedure to install storage controller and interact with it.
6. Find procedure to set up the one node Hadoop cluster.
7. Mount the one node Hadoop cluster using FUSE.
8. Write a program to use the API’s of Hadoop to interact with it.
9. Write a word count program to demonstrate the use of Map and Reduce tasks.

Grid and Cloud Computing Lab-Manual

5

Prerequisite of the course

 Core and Advanced Java Programming
 Web Services

Grid and Cloud Computing Lab-Manual

6

Requirements

 Netbeans IDE 8.2
 Cloud Simulator 3.0.3

Grid and Cloud Computing Lab-Manual

7

Instructions for Assessment

 The manual contains the code for all the model exercises that has been prepared
and executed onNetbeans IDE 8.0, Cloud Simulator and appropriate supporting
softwares and frameworks.

 All the laboratory exercises should be implemented on platform mentioned by
the Instructor. The change of platform for implementation is strictly banned.

 All the students are instructed to maintain a hard copy of the manual, separate
notebook and file folder for this course.

 When you come to lab, you have to prepare the pseudo code for your exercises
on spot and then implement the same on above mentioned platform. The pseudo
code must be prepared on the note book and all the observations of your
implementation must be recorded in the note book, once you finished your
exercises. At the end of the laboratory classes, the note book must be signed by
the faculty in charge and assessment will be done.

 When you are coming for the laboratory classes, the completed record sheets for
the previous class exercises must be produced for signature of faculty in charge
except for first class of the course.

 All the exercises need to be completed in the respective classes itself. The
deadline will not be extended at any circumstances. All the assessment will be
done in the same class itself.

 You are encourages to do all the necessary preparation before you come to the
lab. Treat every lab class as lab examination.

 Every exercise will be assessed for maximum of 25 marks.

Grid and Cloud Computing Lab-Manual

8

1. DEVELOP A NEW WEB SERVICE FOR CALCULATOR

AIM

 To develop a web service for calculator in java using Netbeans IDE

SOFTWARE USED

 Netbeans IDE 8.2

 JDK 8.1

 Glassfish Web Server

PROCEDURE

 Step 1: Create a Java Web Project
 Open Netbeans IDE 8.2
 Click on New Project and choose Java Web -> Web Application
 Enter the Project Name: CalculatorWS, using the default settings and then click

on “Finish”. Now the Project has been created.
 Step 2: Create a Web Service

 Now go to the Project Tree Structure on the left side of the window.
 Right click on the project and select “New” and then choose “Web Service”
 Specify web service name “CalWS” and package name “CalculatorWS”. Click on

“Finish”.
 Open CalWS.java file, replace the original hello() function with the following

code:
 @WebMethod(operationName = "add")
 public String add(@WebParam(name = "value1") String
value1,@WebParam(name="value2") String value2) {
 float value=Float.valueOf(value1)+Float.valueOf(value2);
 return (Float.toString(value));
}

 Similarly write the code for subtraction, multiplication, division and other calculator
operations. Refer the program section for full program.

 Now the web service is created.
 Step 3: Deploy and Test Web Service

 Right click on the project and select “Deploy”
 This is to deploy all the web services in this project. If success, you will see:

Grid and Cloud Computing Lab-Manual

9

 To test the web service, right click on the service and select “Test Web Service”

You will see:

Right Click on the project and select “Clean and Build”, a war file will be automatically
generated under “dist” sub-directory.

PROGRAM (Use the below given program for CalWS.java)

package CalculatorWS;

Grid and Cloud Computing Lab-Manual

10

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.WebParam;

/**

 *

 * @author poonkuntran

 */

@WebService(serviceName = "CalWS")

public class CalWS {

 @WebMethod(operationName = "add")

 public String add(@WebParam(name = "value1") String
value1,@WebParam(name="value2") String value2) {

 float value=Float.valueOf(value1)+Float.valueOf(value2);

 return (Float.toString(value));

}

@WebMethod(operationName= "sub")

 public String sub(@WebParam(name= "value1")String
value1,@WebParam(name="value2")String value2){

float value=Float.valueOf(value1)-Float.valueOf(value2);

return (Float.toString(value));

}

 @WebMethod(operationName= "mul")

 public String mul(@WebParam(name= "value1")String
value1,@WebParam(name="value2")String value2){

float value=Float.valueOf(value1)*Float.valueOf(value2);

return (Float.toString(value));

}

 @WebMethod(operationName= "div")

Grid and Cloud Computing Lab-Manual

11

 public String div(@WebParam(name= "value1")String
value1,@WebParam(name="value2")String value2){

float value=Float.valueOf(value1)/Float.valueOf(value2);

return (Float.toString(value));

}

 @WebMethod(operationName= "mod")

 public String mod(@WebParam(name= "value1")String
value1,@WebParam(name="value2")String value2){

float value=Float.valueOf(value1)%Float.valueOf(value2);

return (Float.toString(value));

}

 @WebMethod(operationName= "cube")

 public String cube(@WebParam(name= "value1")String value1){

float value=Float.valueOf(value1)*Float.valueOf(value1)*Float.valueOf(value1);

return (Float.toString(value));

}

 @WebMethod(operationName= "square")

 public String square(@WebParam(name= "value1")String value1){

float value=Float.valueOf(value1)*Float.valueOf(value1);

return (Float.toString(value));

}

 @WebMethod(operationName= "sin")

 public String sin(@WebParam(name= "value1")String value1){

 double value=Math.sin(0);

return (Double.toString(value));

}

 @WebMethod(operationName= "cos")

 public String cos(@WebParam(name= "value1")String value1){

Grid and Cloud Computing Lab

12

 double value=Double.valueOf(Math.cos(0));

return (Double.toString(value));

 }

 @WebMethod(operationName= "sqrot")

 public String sqrot(@WebParam(name= "value1")String value1){

 double value=Math.sqrt(4);

return (Double.toString(value));

 }

OUTPUT

Grid and Cloud Computing Lab-Manual

e=Double.valueOf(Math.cos(0));

@WebMethod(operationName= "sqrot")

public String sqrot(@WebParam(name= "value1")String value1){

double value=Math.sqrt(4);

Grid and Cloud Computing Lab

13

CONCLUSIONS

The web service has been created for calculator operations and it is deployed and
tested in Java Web Application using Netbeans IDE.

Grid and Cloud Computing Lab-Manual

The web service has been created for calculator operations and it is deployed and
tested in Java Web Application using Netbeans IDE.

The web service has been created for calculator operations and it is deployed and

Grid and Cloud Computing Lab-Manual

14

2. DEVELOP A OGSA COMPLIANT WEBSERVICE

Aim

To develop new open grid service architecture- complaint web service in java using
NetBeans IDE 8.2.

Procedure

To solve the following tasks have to be performed:

1. Use the netbeans
2. Make a stud table in the jdbc:derby database
3. Create a Web project
4. Develop a Web Service program for student
5. Create a exam operation in the web service
6. Add enterprise resources for the database
7. Edit source code
8. Build & deploy the project
9. Test the web service Derby database

This is a small database software bundled with Netbeans in glassfish server. It is easy
to create a database, create a table, make the queries over it. User can connect easily the
enterprise program, web service program and web program with derby database software.
Connecting database

 Open the Netbeans software
 Navigate to the services tab
 Open database folder and select the derby database
 Right Click and select start the server as given below in figure 1

Grid and Cloud Computing Lab-Manual

15

Figure 1

 Select the sample database or you can create one
 Right Click and Select Connect as given below in Figure 2.
 It will connect to the sample database

Figure 2

 Right Click and select Create table as given
 It will Open a dialog box as shown below in Figure 3

Grid and Cloud Computing Lab-Manual

16

 Figure 3

 In this dialog box give the table name as stud
 Now add the columns
 Add the two columns
 Roll with data type numeric and Name with data type char
 Do all steps as shown below in Figure 4.
 It create a stud table a sample database

 Figure. 4

Creating Web Service project
 Create a new web project
 Give a name as jaax2
 Select the server as glassfish and java EE web 6 version

Grid and Cloud Computing Lab-Manual

17

 Click on the finish as shown below in Figure 5

 Figure 5
Create a web service

 Right Click on the project
 Select New->Web Service
 Type name as stud
 Type package as pack1 as shown below in Figure 6

 Figure 6

Grid and Cloud Computing Lab-Manual

18

 This will create a stud Web Service class
Adding operation

 In the design view Click on the Add Operation
 It will generate a Add operation Dialog Box as shown below n Figure. 7

Figure. 7

 In the pop up dialog box give the operation name and parameters
o Operation name exam
o Return type String
o Parameters name roll and name

 Follow the steps according to Fig 8 given below

 Figure. 8

Grid and Cloud Computing Lab-Manual

19

Now click source->It creates a full web service class as shown below

package pack1;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;

@WebService()
public class stud {

 @WebMethod(operationName = "exam")
 public String exam(@WebParam(name = "roll")
 int roll, @WebParam(name = "name")
 String name) {
 //TODO write your implementation code here:
 return null;
 }
}

Adding Database capabilities

 Database and table created above is used in the web service
 Right Click in the code section of web service and click Insert Code(fig 9)->list

display as in figure 9.1 and click use database in Figure 9.1

Figure 9

Grid and Cloud Computing Lab-Manual

20

Figure 9.1

 Fig 9.2 displayed and then click Add
 Add the data source reference
 Type Reference name data1
 Select jdbc/sample Server Data Source as shown below in Fig 10.

Figure 9.2

 Figure. 10

 Click on Ok as shown below in Fig. 11.

Grid and Cloud Computing Lab-Manual

21

Figure. 11

 This creates Data Source reference variable data1 at the top of method
 Now make changes in the code for database connection as shown in code

package pack1;

import java.sql.Connection; --Add this statement
import java.sql.PreparedStatement; --Add this statement
import javax.annotation.Resource;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;
import javax.sql.DataSource;

@WebService()
public class stud {
 @Resource(name = "data1")
 private DataSource data1;

 @WebMethod(operationName = "exam")
 public String exam(@WebParam(name = "roll")
 int roll, @WebParam(name = "name")String name) {
 String status="record not inserted";
 try {
 Connection con=data1.getConnection();
 PreparedStatement ps=con.prepareStatement("INSERT INTO stud VALUES(?,?)");
 ps.setInt(1,roll);
 ps.setString(2,name);
 int i=ps.executeUpdate();
 if(i!=0) {
 status="record inserted";
 }
 }
 catch(Exception e){
 System.out.println("error in strong data"+e);
 }

Grid and Cloud Computing Lab-Manual

22

 return status;
 }
}

Running the project

 Build the above created project
 Deploy the project on the server as shown below in Figure. 12
 This deploys the project on the server
 We can now run our Web Service

Figure. 12

 Right Click on Web Service stud
 Select Test Web Service as shown below in Figure. 13

Grid and Cloud Computing Lab-Manual

23

Figure 13

 It open Web Service in the browser
 Give the 1 and jack in text boxes
 Text boxes are actually arguments of web method
 Click on exam button as shown below in Fig. 14

 Figure.
14

 Exam Buttons are actually method name of the Web Service
 This will result the value with SOAP request and SOAP response, As shown below in

Figure 15.

 It will insert the values in the Derby Database table

Grid and Cloud Computing Lab-Manual

24

 Figure 15

 Check the inserted values in the table
 Right Click on the stud table in derby database
 Select View Data as shown below in Figure 16.

 It shows the inserted data as shown below in Figure 17.

Figure 16

Grid and Cloud Computing Lab-Manual

25

 Figure 17

Client Web Service
//create a new web application

 Take a new Web Application Project
 Type name jax2Client
 Click on Next as shown below in Figure. 18

Grid and Cloud Computing Lab-Manual

26

Figure. 18

 Right Click on the project jax2Client.
 Select the New->other->in categories ->click->Web services-> in file type-> click

Web Service Client-> click next-> as in fig 19
 It creates a dialog box for WSDL and Client Location

Grid and Cloud Computing Lab-Manual

27

Figure 19

 Now select either the project or give the WSDL URL
 Click on Next as shown below in Figure. 20
 Click on the Finish Button

If you select wsdl URL mean

Grid and Cloud Computing Lab-Manual

28

Figure. 20

Or if you select project tab and browse as in fig 20.1

Grid and Cloud Computing Lab-Manual

29

Client.jsp

 Now make a Client.jsp file
 Right Click on the Project jax2Client
 Select NewàJsp file
 Give the name as Client1.jsp
 Right Click in the code of Client1.jsp
 Select Web Service Client Resources as shown below in Figure. 21

Grid and Cloud Computing Lab-Manual

30

Figure. 21

 Select the operation in the Client project jax2ClientàstudServiceàstudPortàexam
 As shown below in Figure. 22

 Figure. 22

 The above steps generates code in Client.jsp
 It gives the stud Web Service object, Stud port and operation name code
 In two arguments name and roll initialize the value.

Grid and Cloud Computing Lab-Manual

31

As shown below in Figure. 23.

Figure. 23

Running The Client file
 Deploy the jax2Client project
 Right Click in Client.jsp and select Run Client.jsp

 As shown below in Figure. 24.

Figure. 24

Grid and Cloud Computing Lab

32

 It runs the file in the Internet Browser
 It gives the status message record inserted
 In case of failure it will display record not inserted

 Aas shown below in Figure. 25

Figure. 25

 On running the Client.jsp it inserts the value into the
 To view the table data Right Click on the stud table in sample database in derby
 It fetches the records and display it in table

Figure. 26

Grid and Cloud Computing Lab-Manual

It runs the file in the Internet Browser
It gives the status message record inserted
In case of failure it will display record not inserted

On running the Client.jsp it inserts the value into the table
To view the table data Right Click on the stud table in sample database in derby

and display it in table as shown below in Figure 26

To view the table data Right Click on the stud table in sample database in derby
as shown below in Figure 26

Grid and Cloud Computing Lab-Manual

33

PROGRAM

Stud.java

package student;

import java.sql.Connection;

import java.sql.PreparedStatement;

import javax.annotation.Resource;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.sql.DataSource;

@WebService(serviceName = "stud")

public class stud {

 @Resource(name = "data1")

 private DataSource data1;

 @WebMethod(operationName = "exam")

 public String exam(@WebParam(name = "roll") int roll, @WebParam(name = "name")
String name) {

 String status="record not inserted";

 try {

 Connection con=data1.getConnection();

 PreparedStatement ps=con.prepareStatement("INSERT INTO stud VALUES(?,?)");

 ps.setInt(1,roll);

 ps.setString(2,name);

 int i=ps.executeUpdate();

 if(i!=0) {

 status="record inserted";

 }

Grid and Cloud Computing Lab-Manual

34

 }

 catch(Exception e){

 System.out.println("error in strong data"+e);

 }

 return status;

 }

}

Client.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head> <body> <hr/>

 <%

 try {

 student.Stud_Service service = new student.Stud_Service();

 student.Stud port = service.getStudPort();

 int roll = 2;

 java.lang.String name = "Niraj";

 java.lang.String result = port.exam(roll, name);

 out.println("Result = "+result);

 } catch (Exception ex) {

}

 %>

 <hr/> </body>

</html>

Grid and Cloud Computing Lab-Manual

35

OUTPUT

stud Web Service Tester

This form will allow you to test your web service implementation (WSDL File)

To invoke an operation, fill the method parameter(s) input boxes and click on the button
labeled with the method name.

Methods :
public abstract java.lang.String student.Stud.exam(int,java.lang.String)

exam
 (,)

exam Method invocation

Method parameter(s)

Type Value

int 1

java.lang.String laksh

Method returned

java.lang.String : "record inserted"

SOAP Request

<?xml version="1.0" encoding="UTF-8"?><S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>
 <S:Body>
 <ns2:exam xmlns:ns2="http://student/">
 <roll>1</roll>
 <name>laksh</name>
 </ns2:exam>
 </S:Body>
</S:Envelope>

SOAP Response

Grid and Cloud Computing Lab-Manual

36

<?xml version="1.0" encoding="UTF-8"?><S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <S:Body>
 <ns2:examResponse xmlns:ns2="http://student/">
 <return>record inserted</return>
 </ns2:examResponse>
 </S:Body>
</S:Envelope>

CONCLUSIONS

Thus, a new open grid service architecture- complaint web service in java using
NetBeans IDE 8.2 was built and deployed successfully.

Grid and Cloud Computing Lab-Manual

37

3. Develop a Grid Service Using Apache

AIM

To develop a grid service using Apache axis in net beans 8.2

PROCEDURE

Search axis2 download in google

Download both binary distribution and war distribution

Unzip both the downloads

In the binary distribution go to lib folder

Copy all the jar files alone

Then go to the following location(This is as per my pc, check for your pc)

C:\Users\14cse35\AppData\Roaming\NetBeans\8.2\modules\ext\axis2

Delete all the files present there.

Paste the jar files that you copied from lib folder

Go to Tools -> Libraries and select Axis-1.3 (version may differ for you)

Under library class path select all and click remove

Now click Add JAR/Folder

Browse to the location

C:\Users\14cse35\AppData\Roaming\NetBeans\8.2\modules\ext\axis2 (location may differ)

Select all the files and click Add JAR/Folder

Also check for library name version and update it and click OK.

Start the glass fish server in net beans IDE from services -- > server

Go to browser and type

Localhost:8080

If the following comes you are on the right path

Grid and Cloud Computing Lab-Manual

38

Go to browser and type localhost:4848

Click Applications from the left pane

Click Deploy and then select the file axis2.war from the war distribution

After the file gets loaded click OK

A file axis2 with hyperlink will be there. Click that

Again go to Applications in the left pane and click Launch which is across Axis2 service

A browser page opens click the first link

Click Services and then click Version

It will take you to a wsdl page.

Edit the url as follows

…../axis2/services/Version/getVersion?

Hit Enter, you will get the version number of deployed service

Installing the Axis2 Support Plugin

 In the IDE, go to the Plugin Manager, under the Tools menu, and check whether
Axis2 Support Plugin is installed, under the Installed tab. If it is installed, check
whether an update is available in the Updates tab. If the Axis2 support is not installed,
install it from -> Go to Tools -> Plugin
 -> Settings tab and then click Add.

Now give the below url

Grid and Cloud Computing Lab-Manual

39

http://deadlock.netbeans.org/hudson/job/nbms-and-
javadoc/lastStableBuild/artifact/nbbuild/nbms/updates.xml.gz

Setting Up Axis2 Options for GlassFish

 Go to this url and click the first link

http://www.apache.org/dyn/closer.lua/axis/axis2/java/core/1.7.5/axis2-1.7.5-war.zip

To set up Axis2 options for Glassfish:

Unpack the downloaded archive file

containing axis2.war to GLASSFISH_HOME/domains/DOMAIN_NAME/autodeploy. To

find GLASSFISH_HOME and the name of your domain, start the IDE and open the Services

tab. Expand the Servers node. Right-click the GlassFish node and select Properties from the

context menu. The Domains folder location and the name of the domain are visible in

common tab.

C:\Users\14cse35\AppData\Roaming\NetBeans\8.2\config\GF_4.1.1\domain1\autodeploy

(AppData is a hidden folder to open that  after clicking your particular user name->

click organize tab-> Folders and search option->click view tab -> select show hidden files

folders-> click ok-> now AppData folder Visible)

Now click AppData->Roaming->Netbeans->8.2->config->GF-4.1.1->domain1-

>Autodeploy->paste the axis.war file in the autodeploy folder

Grid and Cloud Computing Lab-Manual

40

.

Grid and Cloud Computing Lab-Manual

41

 Start the IDE. From the top menu bar, choose Tools -> Options. The Options dialog

opens.

 Click the Axis2 icon. The Axis2 deployment options page opens. ->browse link

(C:\Users\14cse35\AppData\Roaming\NetBeans\8.2\config\GF_4.1.1\domain1\autode

ploy\axis2.war)-> click ok

 Set the target location for Axis2 AAR files to the axis2.war file you unpacked into the

GlassFish autodeploy directory.

By placing axis2.war into autodeploy, you enable GlassFish to automatically

redeploy axis2.war every time you alter the file. On GlassFish , however, you cannot

redeploy the WAR file while the server is running.

5. Make sure the Axis2 URL field contains the correct port number for your GlassFish

server. To check the port number, start GlassFish (from the Services tab or from Tools

Grid and Cloud Computing Lab-Manual

42

-> Servers) and see what 80xx port HTTP 1.1 uses. The default port number is 8080.

In the following image, the correct port number is 8081 (because another server

already uses 8080).

Developing an Axis2 Web Service

In this section, you use NetBeans IDE to create, deploy, test, and modify an Axis2 web

service.

Creating an Axis2 Web Service

With NetBeans IDE, you can create an Axis2 web service from a Java class. You can only do

this from a Java application or Java library project. In this tutorial, you create a Java library

project (because you do not need a main method), create an Axis2 web service in that project

(creating the Java class at the same time) and deploy the Axis2 web service to a server.You

can only create an Axis2 web service from a Java or Java Library project. This is because

the axis.aar file (the deployable archive into which web services and Axis configuration files

are packed) is neither a WAR nor an EAR and cannot be deployed normally as a web (EAR)

application.

To create an Axis2 web service:

1. Click the New Project icon or File -> New Project. The New Project wizard opens.

From the Java category, select a Java class library project. Click Next.

2. Name the project AxisHello. Check that you are using the project folder name and

location that you want. It is up to you whether to share the project. Click Finish, and

the IDE creates the project.

Grid and Cloud Computing Lab-Manual

43

3. Right-click the project node. The context menu opens. In the context menu, choose

New -> Other. The New File wizard opens. From the Web Services category, choose

Axis2 Service from Java and click Next.

4. The Service Type Selection page of the New File wizard is now open. You do not

have any Java classes in the project, so select "Create an Empty Web Service." If you

had already coded a Java class, you would have selected Create a Web Service from

an Existing Java Class. If you wanted to edit the WSDL of the web service, for

example to add or change namespaces, you would select Generate a WSDL from Java

Source Code. Editing WSDL is outside the scope of this tutorial, so leave this

unselected. The wizard should look like the following image.

5. Click Next. The Name and Location page opens. Name the Java class

HelloAxisWorld. Name the package axishello. Leave Generate Sample Method

selected. This generates a method in the Java class that returns "Hello, World."

6. Click Finish. The IDE generates a HelloAxisWorld.java class in the axishello

source package and a HelloAxisWorld Axis2 web service that mirrors this Java class.

You can see that both the Java class and the Axis2 web service have a hello:String

Grid and Cloud Computing Lab-Manual

44

operation, shown in the Navigator tab and as a node of the Axis2 web service,

respectively.

Deploying and Testing an Axis2 Web Service

To deploy an Axis2 web service to the server:

1. Right-click the web service's node. The context menu opens. Select Deploy to

Server. The IDE compiles an Axis2 AAR file and copies it to the axis2.war file used

by the application server.

2. If you have enabled automatic deployment, the web service is deployed to the

server. If the server is not running, start it and the web service is automatically

deployed.

3. To test the service, expand the web service node to reveal the operations. Right-

click the hello:String node and select Test Operation in Browser.

IF THE TEST OPERATION IS NOT DEPLOYED IN SERVER LIKE GIVEN
BELOW!!!!

Grid and Cloud Computing Lab-Manual

45

THEN,WE DEPLOY IT MANUALLY,

First Build the java project.then,

Go to Web-browser->localhost:8080/axis2/

Type user name:admin and Password:axis2

Grid and Cloud Computing Lab-Manual

46

->Administration->Available Services->it’ll show java_class->and give the values as what
mentioned in the java directory.

Finally,it run on the browser given above.

*If it not run further go to Netbeans project->extract your java class->In services.xml -
>change the input and output messageReceiver namespace like given below.

Services.xml

<?xml version="1.0" encoding="UTF-8"?>
<serviceGroup><service scope="application"
name="HelloWorld"><description>HelloWorld
service</description><messageReceivers><messageReceiver
class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver"
mep="http://www.w3.org/ns/wsdl/in-only"/><messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"
mep="http://www.w3.org/ns/wsdl/in-out"/></messageReceivers><parameter
name="ServiceClass">services.HelloWorld</parameter></service></serviceGroup>

Grid and Cloud Computing Lab-Manual

47

4. Your browser opens with a test value of your variables. The test value is appended to
the URL.

5. Change the variable value in the URL and press Enter. The test result changes as well.

Changing the Web Service's Operations

To change the web service operations, edit the Java file in the project. The operations in the

web service change simultaneously. Add a simple add method to HelloAxisWorld.java, as

below.

public class HelloAxisWorld {

 /** Sample method

Grid and Cloud Computing Lab-Manual

48

 */
 public String hello(String name) {
 return "Hello "+name;

 }
 public int add(int x, int y) {

 return x+y;

 }
 }

Save the Java file, and the operation appears as a subnode of the web service.

Redeploy the web service and test it as described in Deploying and Testing an Axis2 Web

Service.

Refer: http://aragorn.pb.bialystok.pl/~dmalyszko/PaWWW/ps34-axix2.htm

CONCLUSIONS

Thus, the grid service using Apache axis in net beans 8.2 is developed and the outputs
are verified.

Grid and Cloud Computing Lab-Manual

49

4. DEVELOP APPLICATIONS USING JAVA OR C/C++ GRID APIS

AIM

To develop an applications using Java or C/C++ Grid APIs in Net beans 8.2

PROCEDURE

To create RESTful web services, you need a Java Web application project.
To create the project:

1. Choose File > New Project (Ctrl-Shift-N. Under Categories, select Java Web. Under
Projects, select Web Application. Click Next.->Gridlab(project name)->next-> The
New Web Application wizard opens.

2. Select either Java EE 6 Web or Java EE 7 Web. Under Server, select the server you
want to use, but note that Java EE projects require GlassFishserver . Click through the
remaining options and click Finish.

Creating Database
Select services->Database->javaDB->right click->create Database->database name :gridlab-
>usernsme:gridlab ->password->gridlab ->retype pwd: gridlab->click ok

Select & Right click->jdbc:derby://localhost:1527/ gridlab->connect

Goto project->select your project name(gridlab)->rightclick->new->entity class->class
name:seller->next->gotoDatasource->select new datasource->select database connection and
click ok->then click finish

Seller.java code page will open-> right click in the code page->select insert code-> select add
property->edit name as->lastname->ok

Again in-> Seller.java code page will open-> right click in the code page->select insert code-
> select add property->edit name as->firstname->ok

Again in-> Seller.java code page will open-> right click in the code page->select insert code-
> select add property->edit name as->email->ok

Grid and Cloud Computing Lab-Manual

50

Next go to project-> right click->new->select RESTful webservices from Entity classes…

A window open->select from the available entity classes->Seller(com.bonbhel.oracle.kavi4)-
>click Add->next->edit resource package name->select from dropdown->gridlab and edit as
(gridlab.service)->finish->check for option netbeans is selected->click ok

Got your project-> expand gridlab.service->click AbstractFacade.java->code will display

Next click->SellerFacadeREST.java->code will display->in the code section-> edit the
following @path(“gridlab.seller”)-> as ->@path(“/seller/”)->

Rightclick project->run->browser page will open and display as Hello world-> in the address
bar->edit the address as->http://localhost:8080/kavi4/resources/seller/ ->reload the page->
output display as -><sellers>

Now go to project->rightclick->new-> JSF pages from entity classes.. -> a window open->
select from available entity classes-> com.bonbhel.oracle.kavi4.seller-> click add-> next->
edit session bean package as-> com.bonbhel.oracle.kavi4.facade-> then edit JSF classes
package as-> com.bonbhel.oracle.kavi4.presentation- then JSF pages Folder as->ui->
next->check for Libraries as->JSF 2.2(version may vary)->finish

OUTPUT

Grid and Cloud Computing Lab-Manual

51

Goto project->right click-> run

Click show all seller items->click create new seller-> type in the fields and click save

-> Then click show All Seller Items

Grid and Cloud Computing Lab-Manual

52

CONCLUSIONS

Thus the implementation of applications using java or c/c++ grid apis has been
verified successfully.

Grid and Cloud Computing Lab-Manual

53

5. DEVELOP SECURE WEB SERVICES APPLICATIONS

AIM

Develop a web service program for Square area calculation. Make this web service secured
using security mechanism of “Username Authentication with Symmetric Keys”

PROCEDURE

 Adding User to Glassfish in Administration
 Make a web project
 Develop web service
 Secure Web Service Application
 Deploy the project
 Make a Client Web project
 Make a Web Service Client
 Edit properties of Web Service
 Deploy and Run the Client

Adding user to GlassFish

To add users to Glassfish using the Admin Console, follow these steps:

 Start the NetBeans
 Start the Glassfish Server as shown below in Fig.1
 Open the Admin Console in the internet browser with the url http://localhost:4848
 Give the User Name admin, password adminadmin

 Figure. 1

 After successful login Admin Console gets opened as shown below in Figure. 2

Grid and Cloud Computing Lab-Manual

54

 Figure. 2

 Expand the Configuration node in the Admin Console tree.

 Expand the Security node in the Admin Console tree.
 Expand the Realms node. Select the file realm as shown below in Fig. 3

 Figure. 3

 Click on New Button for New File Users
 It opens the New File Realm User Form as shown below in Figure 4.

Grid and Cloud Computing Lab-Manual

55

 Figure .4

 In the New File Realm User Form give the following values

 User ID = wsitUser
 Group List = wsit
 New Password = changeit
 Confirm New Password = changeit

 as shown below in Figure. 5

 Figure. 5

 Click OK to add this user to the list of users in the realm.
 After user creation, it gets displayed in File Users as shown below in Figure 6.

Grid and Cloud Computing Lab-Manual

56

 Figure. 6

Web Service Project Creation>

 Create a Web Application Project
 Type the name as WebServiceSecurity.
 Click on Next Button as shown in Figure. 7.

 Figure. 7

 Now select the Server
 Select the Glassfish as shown below in Figure 8.
 Click on Finish Button.

Grid and Cloud Computing Lab-Manual

57

 Figure. 8

Web Service File Creation >

 The above steps creates a Web Application Project
 Create a Web Service File
 Right Click on the Web Service Security
 Select NewàWeb Service as shown below in Figure. 9.

 Figure 9

 Type the web service class name as square
 Type the package name as pack1
 Click on Finish as shown below in Figure 10.

Grid and Cloud Computing Lab-Manual

58

 Figure.10

 It creates a Web Service in design view
 Click on Add Operation Button as shown below in Figure 11

 Figure. 11

 Give the operation name as area with return type String
 Click on add to add parameter
 Type the name of parameter as side and type as int.
 Do above steps as shown below in Figure 12.
 It generates the code of operation area.

Grid and Cloud Computing Lab-Manual

59

 Figure 12

In generated code edit some value as shown below

package pack1;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;

/**
 *
 * @author roseindia
 */
@WebService()
public class square {

 @WebMethod(operationName = "area")
 public String area(@WebParam(name = "side")
 int side) {
 return "area of square of side"+side+" is "+(side*side);
 }
}

 Enabling Security in Web Service>

 Open the square.java Web Service program in design view
 Select the Check box Service Secure as shown below in Fig 13.

Grid and Cloud Computing Lab-Manual

60

 Figure. 13

 Click on Advanced Button
 It opens the dialog box for security
 Select the Secure Service check box as shown below in Figure 14.

 Figure. 14

 After selecting the secure service, it gets applied for Input Message and Output
Message parts

 Scroll down, Input Message and Output Message comes as shown below in Figure 15

Grid and Cloud Computing Lab-Manual

61

 Figure 15

 Click on Message Parts button inside Input Message
 It opens dialog box where all values of Sign is selected
 In Encrypt one value for Body Message part is selected as shown below in Figure 16
 Click on Message Parts button inside Output Message
 It opens dialog box where all values of Sign is selected
 In Encrypt one value for Body Message part is selected as shown below in Figure 17

 Figure 16

Grid and Cloud Computing Lab-Manual

62

 Figure 17

Testing Web Service

 Right Click on the Web Service square
 Select Test Web Service as shown below in Figure 18.

 Figure.18

 It gives message that secured Web Service doesn’t have support of tester feature as
shown below in Figure 19.

 Figure. 19

Web Service Client

 For above created Web Service a Client is created

Grid and Cloud Computing Lab-Manual

63

 Take a new Web Application Project
 Give it a name WebServiceSecurity-Client
 Click on Next button as shown below in Figure 20.

 Figure. 20

 Select the Glassfish server
 Click on Next Button as shown below in Figure 21

 Figure. 21

 A Web Service Client project is created
 Develop a java class for Web Service Client
 Right Click on the WebServiceSecurity-Client select NewàWeb Service Client

As shown below in Figure 22.

Grid and Cloud Computing Lab-Manual

64

 Figure. 22

 It opens a dialog box for WSDL and Client location
 Click on the browse button as shown in Figure 23.

 Figure. 23

 In the pop up dialog box select the Web Service
 Select WebServiceSecurity àsquare
 Click on OK as shown below in Figure 24.

Grid and Cloud Computing Lab-Manual

65

 Figure 24

 This creates a Web Service References Directory
 In side that it creates squareService, squarePort and area method

 As shown below in Figure 25.

 Figure. 25

Calling Web Service Client Resources

 Right Click in default created index.jsp
 Select Web Service Client ResourcesàCall Web Service Operation as shown below in

Figure 26.

Grid and Cloud Computing Lab-Manual

66

 It creates the required code in the index.jsp

 Figure. 26

 Edit the index.jsp and give the value int side=10;

<html>
 <body>

 <%-- start web service invocation --%><hr/>
 <%
 try {
 pack1.SquareService service = new pack1.SquareService();
 pack1.Square port = service.getSquarePort();
 // TODO initialize WS operation arguments here
 int side = 10;
 // TODO process result here
 java.lang.String result = port.area(side);
 out.println("Result = "+result);
 } catch (Exception ex) {
 // TODO handle custom exceptions here
 }
 %>
 <%-- end web service invocation --%><hr/>
 </body>
</html>

Edit Web Service Attributes

 As the web service is secure its client should be edited
 Right Click on squareService in Web Service References

Grid and Cloud Computing Lab-Manual

67

 Select Edit Web Service Attributes as shown below in Figure 27.

 Figure. 27

 In the opened dialog box select the Quality Of Service
 Check the Use development defaults in security
 Click on OK as shown in Figure 28.

 Figure. 28

Running Client Web service >

 Deploy the WebServiceSecurity-Client project
 Right Click in the index.jsp
 Select run index.jsp as shown below in Figure 29.

Grid and Cloud Computing Lab

68

 Figure. 29

 It deploys the project on the server and run it in the browser
 It executes and give the output as shown below in Fig 30.

OUTPUT

CONCLUSIONS

Thus a secure web service has been created and verified successfully.

Grid and Cloud Computing Lab-Manual

It deploys the project on the server and run it in the browser
It executes and give the output as shown below in Fig 30.

service has been created and verified successfully.

Grid and Cloud Computing Lab-Manual

69

6. Find procedure to run the virtual machine of different configuration. Check how
many virtual machines can be utilized at particular time.

AIM:

 TO DEVELOP A VIRTUAL MACHINE USING CLOUD SIM.

ALGORITHM:

Step1:Copy the cloudsim folder in E:drive

Step2:Open the netbeans, Newproject->Java->JavaApplication->project name->mycloud-
>finish

Step 3:right click on mycloud->properties->libraries->add jar folder->browse
(mycomputer->E drive-> unzipped cloudsim folder->jar->cloudsim3.0.3.jar file-> click ok)

Step 4: Go to drive E:\cloudsim-
3.0.3\examples\org\cloudbus\cloudsim\examples\Cloudsimexample1.java

Grid and Cloud Computing Lab-Manual

70

Step5: Right click on Cloudsimexample1.java and copy the code

Step 6: Open Source page in netbeans, delete the code and paste the code (Step5)

Step 7: change the package name and class name as mycloud.

Grid and Cloud Computing Lab-Manual

71

Step 8: Run ,Output Vm is created

CONCLUSIONS

Thus the virtual machine has been created successfully.

Grid and Cloud Computing Lab-Manual

72

7. Find a procedure to attach Virtual Box to a Virtual Machine

AIM:

 To attach a virtual box to a virtual machine.

ALGORITHM:

 Step1:Goto :https://sourceforge.net/projects/rf-virtualbox-lib-py/

Step2:download and copy the folder in E:drive

Step3:open the IDEnew projectjava Java project with Existing resources

Grid and Cloud Computing Lab

73

Step4:Goto Name and Location

Step5:Existing SourcesAdd Folder

Step6:Click Add FolderMycomputer
1.1open

Grid and Cloud Computing Lab-Manual

Project NameNext

Add FolderE:\ Robot framework virtualbox lib-1.1

MycomputerE driveRobot framework virtualbox lib

Robot framework virtualbox lib-

Grid and Cloud Computing Lab

74

Step7:Attached the virtual box in the virtual machine

Step8: Attached the virtual block to the virtual machine in the cloud sim

CONCLUSIONS

 Thus virtual box has been attached with virtual machine.

Grid and Cloud Computing Lab-Manual

Step7:Attached the virtual box in the virtual machine

Attached the virtual block to the virtual machine in the cloud sim

Thus virtual box has been attached with virtual machine.

Grid and Cloud Computing Lab-Manual

75

8. Install a C compiler in the virtual machine and execute a sample program.

Aim:

 To Install a C compiler in the virtual machine and execute a sample program

Algorithm:

Step1:Copy the cloudsim folder in E:drive

Step2:Open the netbeans, Newproject->C/C++->CApplication->project name->mycloud-
>finish

Step 3:right click on mycloud->properties->libraries->add jar folder->browse
(mycomputer->E drive-> unzipped cloudsim folder->jar->cloudsim3.0.3.jar file-> click ok)

Grid and Cloud Computing Lab-Manual

76

Step 4: Go to drive E:\cloudsim-
3.0.3\examples\org\cloudbus\cloudsim\examples\Cloudsimexample1.c

Step5: Right click on Cloudsimexample1.c and copy the code

Step 6: Open Source page in netbeans, delete the code and paste the code (Step5)

Grid and Cloud Computing Lab-Manual

77

Step 7: change the package name and class name as mycloud.

Step 8: Run ,Output Vm is created

Conclusions

 Thus the c compiler has been implemented successfully.

Grid and Cloud Computing Lab

78

9. Show a Virtual Machine Migration based on the certain condition from one
node to another

Aim:

 To perform virtual machine migration based on the certain
another.

Algorithm:

Step1: Open NetBeans8.2

Step2: Open the url: https://github.com/manoelcampos/cloudsim

Step3: In IDE Goto Team-> Git

Grid and Cloud Computing Lab-Manual

Show a Virtual Machine Migration based on the certain condition from one

To perform virtual machine migration based on the certain condition from one node to

https://github.com/manoelcampos/cloudsim-plus

> Git-> Clone

Show a Virtual Machine Migration based on the certain condition from one

condition from one node to

Grid and Cloud Computing Lab

79

Step4:Remote RepositoryRepository URL appears on the screen

Step5:Type the url in the Repository URL
and Click---> Next

Grid and Cloud Computing Lab-Manual

Repository URL appears on the screen

Step5:Type the url in the Repository URL https://github.com/manoelcampos/cloudsim

https://github.com/manoelcampos/cloudsim-plus

Grid and Cloud Computing Lab

80

Step6:Now it is connected to Git Repository
,click-Next

Step7:Destination DirectoryBrowse
C:\Users\Administrator\Documents

Grid and Cloud Computing Lab-Manual

d to Git Repository Remote Repository opens on the screen

Browse
Documents\NetBeansprojectsclick finish

Remote Repository opens on the screen

Grid and Cloud Computing Lab

81

Step8: Open Projectcloudplus module

Step:9 Right click cloudsim module

Grid and Cloud Computing Lab-Manual

cloudplus module

Step:9 Right click cloudsim moduleclean and build

Grid and Cloud Computing Lab

82

Step:10 Click cloudsimplusmodules
cloud migration.java

Step:11 Click migration Run file

Conclusions

 Thus virtual migration has been performed successfully.

Grid and Cloud Computing Lab-Manual

modules-cloudsimplus examplessource packages

Run file SUCESSFULLY MIGRATED

Thus virtual migration has been performed successfully.

source packagesclick

Grid and Cloud Computing Lab-Manual

83

10. Find procedure to install storage controller and interact with it.

Aim:

 To install storage controller and interact with it.

Algorithm:

Step1:Goto https://sourceforge.net/projects/windirstat/files/

Step2: download and Run the Winstart1_1_2

Grid and Cloud Computing Lab

84

Step4: choose the E:drive and Do the Installation

Step5:Open IDE-SELECT New Project

Grid and Cloud Computing Lab-Manual

Step4: choose the E:drive and Do the Installation

SELECT New Project

Grid and Cloud Computing Lab-Manual

85

Conclusions

 Thus the storage controller has been implemented successfully.

Grid and Cloud Computing Lab-Manual

86

11. Write a word count program to demonstrate the use of Map and Reduce
tasks

AIM:

To write a wordcount program to demonstrate the use of map and reduce using hadoop
framework.

ALGORITHM:

Step1:copy the cloudsim folder in E:drive

Step2:Open the netbeans, Newproject->Java->JavaApplication->project name->hadoop-
>finish

Step 3:right click on mycloud->properties->libraries->add jar folder->browse
(mycomputer->E drive-> unzipped cloudsim folder->jar->cloudsim3.0.3.jar file-> click ok)

Grid and Cloud Computing Lab-Manual

87

Step 4: Go to drive E:\cloudsim-
3.0.3\examples\org\cloudbus\cloudsim\examples\mapper.java

 Step 5: Go to drive E:\cloudsim-
3.0.3\examples\org\cloudbus\cloudsim\examples\reducer.java

Step 6: Go to drive E:\cloudsim-
3.0.3\examples\org\cloudbus\cloudsim\examples\hadoop.java

Step7:run the program

Step 8:get the result

PROGRAM:

MapClass.java

 import java.io.IOException;

 import java.util.StringTokenizer;

 import org.apache.hadoop.io.IntWritable;

 import org.apache.hadoop.io.LongWritable;

 import org.apache.hadoop.io.Text;

 import org.apache.hadoop.mapreduce.Mapper;

 public class MapClass extends Mapper<LongWritable, Text, Text, IntWritable>{

Grid and Cloud Computing Lab-Manual

88

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 @Override

 protected void map(LongWritable key, Text value,

 Context context)

 throws IOException, InterruptedException {

 String line = value.toString();

 StringTokenizer st = new StringTokenizer(line," ");

 while(st.hasMoreTokens()){

 word.set(st.nextToken());

 context.write(word,one);

 }

 }

}

ReduceClass.java

 import java.io.IOException;

 import java.util.Iterator;

 import org.apache.hadoop.io.IntWritable;

 import org.apache.hadoop.io.Text;

 import org.apache.hadoop.mapreduce.Reducer;

 public class ReduceClass extends Reducer{

 @Override

 protected void reduce(Text key, Iterable values, Context context)

Grid and Cloud Computing Lab-Manual

89

 throws IOException, InterruptedException {

 int sum = 0;

 Iterator valuesIt = values.iterator();

 while(valuesIt.hasNext()){

 sum = sum + valuesIt.next().get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

hadoop.java

 import org.apache.hadoop.conf.Configured;

 import org.apache.hadoop.fs.Path;

 import org.apache.hadoop.io.IntWritable;

 import org.apache.hadoop.io.Text;

 import org.apache.hadoop.mapreduce.Job;

 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

 import org.apache.hadoop.util.Tool;

 import org.apache.hadoop.util.ToolRunner;

 public class WordCount extends Configured implements Tool{

 public static void main(String[] args) throws Exception{

 int exitCode = ToolRunner.run(new WordCount(), args);

 System.exit(exitCode);

 }

 public int run(String[] args) throws Exception {

 if (args.length != 2) {

Grid and Cloud Computing Lab-Manual

90

 System.err.printf("Usage: %s needs two arguments, input and output

 files\n", getClass().getSimpleName());

 return -1;

 }

 Job job = new Job();

 job.setJarByClass(WordCount.class);

 job.setJobName("WordCounter");

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 job.setMapperClass(MapClass.class);

 job.setReducerClass(ReduceClass.class);

 int returnValue = job.waitForCompletion(true) ? 0:1;

 if(job.isSuccessful()) {

 System.out.println("Job was successful");

 } else if(!job.isSuccessful()) {

 System.out.println("Job was not successful");

 }

 return returnValue;

 }

 }

Grid and Cloud Computing Lab-Manual

91

Output:

Conclusions:

Thus the map and reduce has been implemented successfully.

Grid and Cloud Computing Lab-Manual

92

12. MOUNT THE ONE NODE HADOOP CLUSTER USING FUSE

Aim:

To write a program to use the API's of Hadoop to interact with it

Procedure:

Interfaces

Following are the important interfaces:

 Client<-->ResourceManager

By using YarnClient objects.

 ApplicationMaster<-->ResourceManager

By using AMRMClientAsync objects, handling events asynchronously by

AMRMClientAsync.CallbackHandler

 ApplicationMaster<-->NodeManager

Launch containers. Communicate with NodeManagers by using NMClientAsync objects,
handling container

events by NMClientAsync.CallbackHandler

Writing a Simple Yarn Application

Writing a simple Client

 The first step that a client needs to do is to initialize and start a YarnClient.
 YarnClientyarnClient = YarnClient.createYarnClient();
 yarnClient.init(conf);
 yarnClient.start();
 Once a client is set up, the client needs to create an application, and get its application id.
 YarnClientApplication app = yarnClient.createApplication();
 GetNewApplicationResponseappResponse = app.getNewApplicationResponse();
 The response from the YarnClientApplication for a new application also contains

information about the cluster such as the minimum/maximum resource capabilities of the
cluster. This is required so that to ensure that you can correctly set the specifications of
the container in which the ApplicationMaster would be launched.

 The main crux of a client is to setup the ApplicationSubmissionContext which defines all
the information

 needed by the RM to launch the AM. A client needs to set the following into the context:
 Application info: id, name

Grid and Cloud Computing Lab-Manual

93

 Queue, priority info: Queue to which the application will be submitted, the priority to be
assigned for the application.

 User: The user submitting the application
 ContainerLaunchContext: The information defining the container in which the AM will

be launched and run.

 The ContainerLaunchContext, as mentioned previously, defines all the required
information needed to run

 the application such as the local *Resources (binaries, jars, files etc.), Environment
settings (CLASSPATH

 etc.), the Command to be executed and security T*okens (RECT).

 The ApplicationReport received from the RM consists of the following:

 General application information: Application id, queue to which the application was
submitted, user who

 submitted the application and the start time for the application.

 ApplicationMaster details: the host on which the AM is running, the rpc port (if any) on
which it is

 listening for requests from clients and a token that the client needs to communicate with
the AM.

 Application tracking information: If the application supports some form of progress
tracking, it can set a

 tracking url which is available via ApplicationReport‘sgetTrackingUrl() method that a
client can look at to

 monitor progress.

 Application status: The state of the application as seen by the ResourceManager is
available viaApplication Report#getYarnApplicationState. If the YarnApplicationState is
set to FINISHED, the client should refer to ApplicationReport#getFinalApplicationStatus
to check for the actual success/failure of the application task itself. In case of failures,
ApplicationReport#getDiagnostics may be useful to shed some more light on the the
failure.

 If the ApplicationMaster supports it, a client can directly query the AM itself for progress
updates via the host:rpcport information obtained from the application report. It can also
use the tracking url obtained From the report if available.

 In certain situations, if the application is taking too long or due to other factors, the client
may wish to killthe application. YarnClient supports the killApplication call that allows a
client to send a kill signal to theAM via the ResourceManager. An ApplicationMaster if
so designed may also support an abort call via its rpc layer that a client may be able to
leverage.

 yarnClient.killApplication(appId);

Writing an ApplicationMaster (AM)

Grid and Cloud Computing Lab-Manual

94

 The AM is the actual owner of the job. It will be launched by the RM and via the client
will be provided all the necessary information and resources about the job that it has been
tasked with to oversee and complete.

 As the AM is launched within a container that may (likely will) be sharing a physical host
with other containers, given the multi-tenancy nature, amongst other issues, it cannot
make any assumptions of things like pre-configured ports that it can listen on.

 When the AM starts up, several parameters are made available to it via the environment.
These include the ContainerId for the AM container, the application submission time and
details about the NM (NodeManager) host running the ApplicationMaster. Ref
ApplicationConstants for parameter names.

 All interactions with the RM require an ApplicationAttemptId (there can be multiple
attempts per application in case of failures). The ApplicationAttemptIdcan be obtained
from the AM‘s container id.

 There are helper APIs to convert the value obtained from the environment into objects.

 In setupContainerAskForRM(), the follow two things need some set up:

 Resource capability: Currently, YARN supports memory based resource requirements so
the request should define how much memory is needed. The value is defined in MB and
has to less than the max capability of the cluster and an exact multiple of the min
capability. Memory resources correspond to physical memory limits imposed on the task
containers. It will also support computation based resource (vCore), as shown in the code.

 Priority: When asking for sets of containers, an AM may define different priorities to
each set. For example, the Map-Reduce AM may assign a higher priority to containers
needed for the Map tasks and a lower priority for the Reduce tasks‘ containers.After
container allocation requests have been sent by the application manager, contailers will be
launched asynchronously, by the event handler of the AMRMClientAsync client. The
handler shouldimplement AMRMClientAsync.CallbackHandler interface.

 When there are containers allocated, the handler sets up a thread that runs the code to
launch

 containers. Here we use the name LaunchContainerRunnable to demonstrate. We will talk
about theLaunchContainerRunnable class in the following part of this article.

 heNMClientAsync object, together with its event handler, handles container events.
Including

 container start, stop, status update, and occurs an error.

 After the ApplicationMaster determines the work is done, it needs to unregister itself
through the AMRMclient, and then stops the client.

Conclusions

Thus the procedure to mount the one node Hadoop cluster using FUSE was executed
successfully

