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Introducing Bayesian Networks

2.1 Introduction

Having presented both theoretical and practical reasons for artificial intelligence to
use probabilistic reasoning, we now introduce the key computer technology for deal-
ing with probabilities in Al, namely Bayesian networks. Bayesian networks (BNs)
are graphical models for reasoning under uncertainty, where the nodes represent vari-
ables (discrete or continuous) and arcs represent direct connections between them.
These direct connections are often causal connections. In addition, BNs model the
quantitative strength of the connections between variables, allowing probabilistic be-
liefs about them to be updated automatically as new information becomes available.

In this chapter we will describe how Bayesian networks are put together (the
syntax) and how to interpret the information encoded in a network (the semantics).
We will look at how to model a problem with a Bayesian network and the types of
reasoning that can be performed.

2.2 Bayesian network basics

A Bayesian network is a graphical structure that allows us to represent and reason
about an uncertain domain. The nodes in a Bayesian network represent a set of ran-
dom variables, X = X;,..Xj,...X},, from the domain. A set of directed arcs (or links)
connects pairs of nodes, X; — X;, representing the direct dependencies between vari-
ables. Assuming discrete variables, the strength of the relationship between variables
is quantified by conditional probability distributions associated with each node. The
only constraint on the arcs allowed in a BN is that there must not be any directed cy-
cles: you cannot return to a node simply by following directed arcs. Such networks
are called directed acyclic graphs, or simply dags.

There are a number of steps that a knowledge engineer' must undertake when
building a Bayesian network. At this stage we will present these steps as a sequence;
however it is important to note that in the real-world the process is not so simple. In
Chapter 10 we provide a fuller description of BN knowledge engineering.

1

'Knowledge engineer in the jargon of Al means a practitioner applying Al technology.
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Throughout the remainder of this section we will use the following simple medi-
cal diagnosis problem.
Example problem: Lung cancer. A patient has been suffering from shortness of
breath (called dyspnoea) and visits the doctor, worried that he has lung cancer. The
doctor knows that other diseases, such as tuberculosis and bronchitis, are possible
causes, as well as lung cancer. She also knows that other relevant information in-
cludes whether or not the patient is a smoker (increasing the chances of cancer and
bronchitis) and what sort of air pollution he has been exposed to. A positive X-ray
would indicate either TB or lung cancer.”

2.2.1 Nodes and values

First, the knowledge engineer must identify the variables of interest. This involves
answering the question: what are the nodes to represent and what values can they
take, or what state can they be in? For now we will consider only nodes that take dis-
crete values. The values should be both mutually exclusive and exhaustive, which
means that the variable must take on exactly one of these values at a time. Common
types of discrete nodes include:

e Boolean nodes, which represent propositions, taking the binary values true (7')
and false (F'). In a medical diagnosis domain, the node Cancer would represent
the proposition that a patient has cancer.

e Ordered values. For example, a node Pollution might represent a patient’s pol-
lution exposure and take the values {low, medium, high}.

o Integral values. For example, a node called Age might represent a patient’s age
and have possible values from 1 to 120.

Even at this early stage, modeling choices are being made. For example, an alter-
native to representing a patient’s exact age might be to clump patients into different
age groups, such as {baby, child, adolescent, young, middleaged, old}. The trick is to
choose values that represent the domain efficiently, but with enough detail to perform
the reasoning required. More on this later!

TABLE 2.1
Preliminary choices of nodes and
values for the lung cancer example.

Node name | Type Values
Pollution | Binary | {low, high}
Smoker Boolean | {7, F}

Cancer Boolean | {T, F}
Dyspnoea | Boolean | {T, F}
X-ray Binary | {pos, neg}

This is a modified version of the so-called “Asia” problem Lauritzen and Spiegelhalter, 1988, given
in §2.5.3.



Introducing Bayesian Networks 31

For our example, we will begin with the restricted set of nodes and values shown
in Table 2.1. These choices already limit what can be represented in the network. For
instance, there is no representation of other diseases, such as TB or bronchitis, so the
system will not be able to provide the probability of the patient having them. Another
limitation is a lack of differentiation, for example between a heavy or a light smoker,
and again the model assumes at least some exposure to pollution. Note that all these
nodes have only two values, which keeps the model simple, but in general there is no
limit to the number of discrete values.

2.2.2 Structure

The structure, or topology, of the network should capture qualitative relationships
between variables. In particular, two nodes should be connected directly if one af-
fects or causes the other, with the arc indicating the direction of the effect. So, in our
medical diagnosis example, we might ask what factors affect a patient’s chance of
having cancer? If the answer is “Pollution and smoking,” then we should add arcs
from Pollution and Smoker to Cancer. Similarly, having cancer will affect the pa-
tient’s breathing and the chances of having a positive X-ray result. So we add arcs
from Cancer to Dyspnoea and XRay. The resultant structure is shown in Figure 2.1.
It is important to note that this is just one possible structure for the problem; we look
at alternative network structures in §2.4.3.

P(S=T)
0.30
P(P=L)
P S | P(C=TIP,S)
H T 0.05
H F 0.02
L T 0.03
Dyspnoea
L F 0.001
C | P(X=poslC) C | P(D=TIC)
T 0.90 T 0.65
F 0.20 F 0.30

FIGURE 2.1: A BN for the lung cancer problem.

Structure terminology and layout

In talking about network structure it is useful to employ a family metaphor: a node
is a parent of a child, if there is an arc from the former to the latter. Extending the
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metaphor, if there is a directed chain of nodes, one node is an ancestor of another if
it appears earlier in the chain, whereas a node is a descendant of another node if it
comes later in the chain. In our example, the Cancer node has two parents, Pollution
and Smoker, while Smoker is an ancestor of both X-ray and Dyspnoea. Similarly, X-
ray is a child of Cancer and descendant of Smoker and Pollution. The set of parent
nodes of a node X is given by Parents(X).

Another useful concept is that of the Markov blanket of a node, which con-
sists of the node’s parents, its children, and its children’s parents. Other terminology
commonly used comes from the “tree” analogy (even though Bayesian networks in
general are graphs rather than trees): any node without parents is called a root node,
while any node without children is called a leaf node. Any other node (non-leaf and
non-root) is called an intermediate node. Given a causal understanding of the BN
structure, this means that root nodes represent original causes, while leaf nodes rep-
resent final effects. In our cancer example, the causes Pollution and Smoker are root
nodes, while the effects X-ray and Dyspnoea are leaf nodes.

By convention, for easier visual examination of BN structure, networks are usu-
ally laid out so that the arcs generally point from top to bottom. This means that the
BN “tree” is usually depicted upside down, with roots at the top and leaves at the
bottom!?

2.2.3 Conditional probabilities

Once the topology of the BN is specified, the next step is to quantify the relationships
between connected nodes — this is done by specifying a conditional probability dis-
tribution for each node. As we are only considering discrete variables at this stage,
this takes the form of a conditional probability table (CPT).

First, for each node we need to look at all the possible combinations of values of
those parent nodes. Each such combination is called an instantiation of the parent
set. For each distinct instantiation of parent node values, we need to specify the
probability that the child will take each of its values.

For example, consider the Cancer node of Figure 2.1. Its parents are Pollution
and Smoking and take the possible joint values {< H,T >,< H,F >, < L,T >,
< L,F >}. The conditional probability table specifies in order the probability of
cancer for each of these cases to be: < 0.05,0.02,0.03,0.001 >. Since these are
probabilities, and must sum to one over all possible states of the Cancer variable,
the probability of no cancer is already implicitly given as one minus the above prob-
abilities in each case; i.e., the probability of no cancer in the four possible parent
instantiations is < 0.95,0.98,0.97,0.999 >.

Root nodes also have an associated CPT, although it is degenerate, containing
only one row representing its prior probabilities. In our example, the prior for a pa-
tient being a smoker is given as 0.3, indicating that 30% of the population that the

30ddly, this is the antipodean standard in computer science; we’ll let you decide what that may mean
about computer scientists!
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doctor sees are smokers, while 90% of the population are exposed to only low levels
of pollution.

Clearly, if a node has many parents or if the parents can take a large number of
values, the CPT can get very large! The size of the CPT is, in fact, exponential in the
number of parents. Thus, for Boolean networks a variable with n parents requires a
CPT with 2""! probabilities.

2.2.4 The Markov property

In general, modeling with Bayesian networks requires the assumption of the Markov
property: there are no direct dependencies in the system being modeled which are
not already explicitly shown via arcs. In our Cancer case, for example, there is no
way for smoking to influence dyspnoea except by way of causing cancer (or not) —
there is no hidden “backdoor” from smoking to dyspnoea. Bayesian networks which
have the Markov property are also called Independence-maps (or, I-maps for short),
since every independence suggested by the lack of an arc is real in the system.

Whereas the independencies suggested by a lack of arcs are generally required to
exist in the system being modeled, it is not generally required that the arcs in a BN
correspond to real dependencies in the system. The CPTs may be parameterized in
such a way as to nullify any dependence. Thus, for example, every fully-connected
Bayesian network can represent, perhaps in a wasteful fashion, any joint probability
distribution over the variables being modeled. Of course, we shall prefer minimal
models and, in particular, minimal I-maps, which are I-maps such that the deletion
of any arc violates I-mapness by implying a non-existent independence in the system.

If, in fact, every arc in a BN happens to correspond to a direct dependence in the
system, then the BN is said to be a Dependence-map (or, D-map for short). A BN
which is both an I-map and a D-map is said to be a perfect map.

2.3 Reasoning with Bayesian networks

Now that we know how a domain and its uncertainty may be represented in a Bayes-
ian network, we will look at how to use the Bayesian network to reason about the
domain. In particular, when we observe the value of some variable, we would like to
condition upon the new information. The process of conditioning (also called prob-
ability propagation or inference or belief updating) is performed via a “flow of
information” through the network. Note that this information flow is not limited to
the directions of the arcs. In our probabilistic system, this becomes the task of com-
puting the posterior probability distribution for a set of query nodes, given values
for some evidence (or observation) nodes.
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2.3.1 Types of reasoning

Bayesian networks provide full representations of probability distributions over their
variables. That implies that they can be conditioned upon any subset of their vari-
ables, supporting any direction of reasoning.

For example, one can perform diagnostic reasoning, i.e., reasoning from symp-
toms to cause, such as when a doctor observes Dyspnoea and then updates his belief
about Cancer and whether the patient is a Smoker. Note that this reasoning occurs in
the opposite direction to the network arcs.

Or again, one can perform predictive reasoning, reasoning from new informa-
tion about causes to new beliefs about effects, following the directions of the network
arcs. For example, the patient may tell his physician that he is a smoker; even before
any symptoms have been assessed, the physician knows this will increase the chances
of the patient having cancer. It will also change the physician’s expectations that the
patient will exhibit other symptoms, such as shortness of breath or having a positive
X-ray result.
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FIGURE 2.2: Types of reasoning.

A further form of reasoning involves reasoning about the mutual causes of a
common effect; this has been called intercausal reasoning. A particular type called
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explaining away is of some interest. Suppose that there are exactly two possible
causes of a particular effect, represented by a v-structure in the BN. This situation
occurs in our model of Figure 2.1 with the causes Smoker and Pollution which have
a common effect, Cancer (of course, reality is more complex than our example!).
Initially, according to the model, these two causes are independent of each other;
that is, a patient smoking (or not) does not change the probability of the patient being
subject to pollution. Suppose, however, that we learn that Mr. Smith has cancer. This
will raise our probability for both possible causes of cancer, increasing the chances
both that he is a smoker and that he has been exposed to pollution. Suppose then
that we discover that he is a smoker. This new information explains the observed
cancer, which in turn lowers the probability that he has been exposed to high levels of
pollution. So, even though the two causes are initially independent, with knowledge
of the effect the presence of one explanatory cause renders an alternative cause less
likely. In other words, the alternative cause has been explained away.

Since any nodes may be query nodes and any may be evidence nodes, sometimes
the reasoning does not fit neatly into one of the types described above. Indeed, we
can combine the above types of reasoning in any way. Figure 2.2 shows the different
varieties of reasoning using the Cancer BN. Note that the last combination shows the
simultaneous use of diagnostic and predictive reasoning.

2.3.2 Types of evidence

So Bayesian networks can be used for calculating new beliefs when new information
— which we have been calling evidence — is available. In our examples to date, we
have considered evidence as a definite finding that a node X has a particular value,
x, which we write as X = x. This is sometimes referred to as specific evidence.
For example, suppose we discover the patient is a smoker, then Smoker=T, which is
specific evidence.

However, sometimes evidence is available that is not so definite. The evidence
might be that a node Y has the value y; or y» (implying that all other values are
impossible). Or the evidence might be that Y is not in state y; (but may take any of
its other values); this is sometimes called a negative evidence.

In fact, the new information might simply be any new probability distribution
over Y. Suppose, for example, that the radiologist who has taken and analyzed the X-
ray in our cancer example is uncertain. He thinks that the X-ray looks positive, but is
only 80% sure. Such information can be incorporated equivalently to Jeffrey condi-
tionalization of §1.5.1, in which case it would correspond to adopting a new posterior
distribution for the node in question. In Bayesian networks this is also known as vir-
tual evidence. Since it is handled via likelihood information, it is also known as
likelihood evidence. We defer further discussion of virtual evidence until Chapter 3,
where we can explain it through the effect on belief updating.
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2.3.3 Reasoning with numbers

Now that we have described qualitatively the types of reasoning that are possible
using BN, and types of evidence, let’s look at the actual numbers. Even before we
obtain any evidence, we can compute a prior belief for the value of each node; this
is the node’s prior probability distribution. We will use the notation Bel(X) for the
posterior probability distribution over a variable X, to distinguish it from the prior
and conditional probability distributions (i.e., P(X), P(X|Y)).

The exact numbers for the updated beliefs for each of the reasoning cases de-
scribed above are given in Table 2.2. The first set are for the priors and conditional
probabilities originally specified in Figure 2.1. The second set of numbers shows
what happens if the smoking rate in the population increases from 30% to 50%,
as represented by a change in the prior for the Smoker node. Note that, since the
two cases differ only in the prior probability of smoking (P(S = T) = 0.3 versus
P(S =T) = 0.5), when the evidence itself is about the patient being a smoker, then
the prior becomes irrelevant and both networks give the same numbers.

TABLE 2.2
Updated beliefs given new information with smoking rate 0.3 (top set) and 0.5
(bottom set).

Node No Reasoning Case
P(5)=0.3 Evidence | Diagnostic | Predictive | Intercausal | Combined
D=T S=T| C=T| C=T D=T
S=T S=T
Bel(P=high) 0.100 0.102 0.100 | 0.249 | 0.156 0.102
Bel(S=T) 0.300 0.307 1] 0.825 1 1
Bel(C=T) 0.011 0.025 0.032 1 1 0.067
Bel(X=pos) 0.208 0.217 0.222 | 0.900 | 0.900 0.247
Bel(D=T) 0.304 1 0.311 | 0.650 | 0.650 1
P(S)=0.5
Bel(P=high) 0.100 0.102 0.100 | 0.201 | 0.156 0.102
Bel(S=T) 0.500 0.508 110917 1 1
Bel(C=T) 0.174 0.037 0.032 1 1 0.067
Bel(X=pos) 0.212 0.226 0.311 | 0.900 | 0.900 0.247
Bel(D=T) 0.306 1 0.222 | 0.650 | 0.650 1

Belief updating can be done using a number of exact and approximate inference
algorithms. We give details of these algorithms in Chapter 3, with particular emphasis
on how choosing different algorithms can affect the efficiency of both the knowledge
engineering process and the automated reasoning in the deployed system. However,
most existing BN software packages use essentially the same algorithm and it is quite
possible to build and use BNs without knowing the details of the belief updating al-
gorithms.



