
Introduction to Grid Computing

Under Regulation 2013 Anna University Page 1

1. INTRODUCTION

1.1 Evolution of Distributed computingComputing since its inception has undergone many changes, from large computers thatperform tasks allowed to a limited and somewhat exclusive use very select organizations, topresent either personal computers or laptops that have the same or even greater capabilitiesthan the first and are increasingly introduced into the daily life of a person.The biggest changes are mainly attributed to two causes, which occurred from theseventies:1. The development of microprocessors, which led to a reduction in size and cost ofcomputers and greatly increase the capabilities of themselves and their access to morepeople.2. The development of local area networks and communication for connecting computers cantransfer data at high speed.
1.1.1 Development of Distributed Systems
Definition:"Systems whose hardware and software components, which are on networkedcomputers, communicate and coordinate their actions by passing messages, to achieve a goal.The connection is made using a predetermined protocol scheme for a client-server".
Features:

 Concurrency - This feature allows distributed systems resources available in thenetwork can be used simultaneously by users and / or agents that interact in thenetwork.
 Lack of global clock - The coordination for the transfer of messages between thevarious components to perform a task, do not have a general timing, is more evenlydistributed to the components.
 Independent failures of components - Each system component may failindependently with which others can continue to execute their actions. This allows theachievement of the tasks more effectively, because the whole system is still working.

Introduction to Grid Computing

Page 2 Under Regulation 2013 Anna University

Evolution:

Figure 1.1 Distributed Systems

Central Processing (Host) - One of the first models of interconnected computers, call center,where all the processing of the organization are carried out on a single computer, usually amainframe, and personal computer users employed simple. The problems with this model are1.when the increased processing load had to change the hardware of the mainframe, which ismore expensive to add more client computers or servers to increase capacity.2.The otherproblem that arose is the modern graphical user interfaces, which could lead to a largeincrease in traffic on the media and therefore could collapse.
Server Group - Another model that came to compete with the former, also somewhatcentralized, are a group of computers acting as servers, normally files or print, unintelligentfor a number of minicomputers that are connected to a processing local area network. Theproblems with this model is Could be generated saturation media between servers andminicomputers unintelligent, for example, when files are requested grades for severalcustomers at once, could greatly reduce the speed of transmission.
Client Server Computing - This model, which prevails at present, can decentralize theprocessing and resources, above all, of each of the services and the Display of Graphical UserInterface. This means that some servers are dedicated only to a particular application andtherefore run efficiently.Definition:System where the client is a machine requesting a particular service and server iscalled the machine that is provided. The services include:* Implementation of a program.* Access to specific bank information.* Access to a hardware device.It is an essential element, the presence of a physical means of communication betweenmachines, and will depend on the nature of this medium the viability of the system.

Introduction to Grid Computing

Page 2 Under Regulation 2013 Anna University

Evolution:

Figure 1.1 Distributed Systems

Central Processing (Host) - One of the first models of interconnected computers, call center,where all the processing of the organization are carried out on a single computer, usually amainframe, and personal computer users employed simple. The problems with this model are1.when the increased processing load had to change the hardware of the mainframe, which ismore expensive to add more client computers or servers to increase capacity.2.The otherproblem that arose is the modern graphical user interfaces, which could lead to a largeincrease in traffic on the media and therefore could collapse.
Server Group - Another model that came to compete with the former, also somewhatcentralized, are a group of computers acting as servers, normally files or print, unintelligentfor a number of minicomputers that are connected to a processing local area network. Theproblems with this model is Could be generated saturation media between servers andminicomputers unintelligent, for example, when files are requested grades for severalcustomers at once, could greatly reduce the speed of transmission.
Client Server Computing - This model, which prevails at present, can decentralize theprocessing and resources, above all, of each of the services and the Display of Graphical UserInterface. This means that some servers are dedicated only to a particular application andtherefore run efficiently.Definition:System where the client is a machine requesting a particular service and server iscalled the machine that is provided. The services include:* Implementation of a program.* Access to specific bank information.* Access to a hardware device.It is an essential element, the presence of a physical means of communication betweenmachines, and will depend on the nature of this medium the viability of the system.

Introduction to Grid Computing

Page 2 Under Regulation 2013 Anna University

Evolution:

Figure 1.1 Distributed Systems

Central Processing (Host) - One of the first models of interconnected computers, call center,where all the processing of the organization are carried out on a single computer, usually amainframe, and personal computer users employed simple. The problems with this model are1.when the increased processing load had to change the hardware of the mainframe, which ismore expensive to add more client computers or servers to increase capacity.2.The otherproblem that arose is the modern graphical user interfaces, which could lead to a largeincrease in traffic on the media and therefore could collapse.
Server Group - Another model that came to compete with the former, also somewhatcentralized, are a group of computers acting as servers, normally files or print, unintelligentfor a number of minicomputers that are connected to a processing local area network. Theproblems with this model is Could be generated saturation media between servers andminicomputers unintelligent, for example, when files are requested grades for severalcustomers at once, could greatly reduce the speed of transmission.
Client Server Computing - This model, which prevails at present, can decentralize theprocessing and resources, above all, of each of the services and the Display of Graphical UserInterface. This means that some servers are dedicated only to a particular application andtherefore run efficiently.Definition:System where the client is a machine requesting a particular service and server iscalled the machine that is provided. The services include:* Implementation of a program.* Access to specific bank information.* Access to a hardware device.It is an essential element, the presence of a physical means of communication betweenmachines, and will depend on the nature of this medium the viability of the system.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 3

1.2 Scalable Computing Over the InternetOver the past 60 years, computing technology has undergone a series of platform andenvironment changes. We assess evolutionary changes in machine architecture, operatingsystem platform, network connectivity, and application workload. Instead of using acentralized computer to solve computational problems, a parallel and distributed computingsystem uses multiple computers to solve large-scale problems over the Internet. Thus,distributed computing becomes data-intensive and network-centric. This section identifies theapplications of modern computer systems that practice parallel and distributed computing.These large-scale Internet applications have significantly enhanced the quality of life andinformation services in society today.
1.2.1 The Age of Internet ComputingBillions of people use the Internet every day. As a result, supercomputer sites and largedata centers must provide high-performance computing services to huge numbers of Internetusers concurrently. The emergence of computing clouds instead demands high-throughputcomputing systems built with parallel and distributed computing technologies. We have toupgrade data centers using fast servers, storage systems, and high-bandwidth networks. Thepurpose is to advance network-based computing and web services with the emerging newtechnologies.
1.2.1.1 The Platform EvolutionComputer technology has gone through five generations of development,

 1950 to 1970- handfuls of mainframes were built to satisfy the demands of largebusinesses and government organizations. Ex. IBM 360 and CDC 6400
 1960 to 1980- lower cost minicomputers became popular among small businesses andon college campuses. Ex. DEC PDP 11 and VAX Series
 1970 to 1990- personal computers built with VLSI microprocessors.
 1980 to 2000- massive numbers of portable computers and pervasive devicesappeared in both wired and wireless applications.
 Since 1990, the use of both HPC and HTC systems hidden in clusters, grids, or Internetclouds has proliferated. These systems are employed by both consumers and high-endweb-scale computing and information services.The general computing trend is to leverage shared web resources and massiveamounts of data over the Internet. Figure 1.1 illustrates the evolution of High-PerformanceComputing (HPC) and High-Throughput Computing (HTC) systems. On the HPC side,supercomputers (massively parallel processors or MPPs) are gradually replaced by clusters ofcooperative computers out of a desire to share computing resources. The cluster is often acollection of homogeneous compute nodes that are physically connected in close range to oneanother.

Introduction to Grid Computing

Page 4 Under Regulation 2013 Anna University

Figure 1.2 Evolutionary trend toward parallel, distributed, and cloud computing

1.2.1.2 High-Performance ComputingHigh-performance computing
 Is the use of parallel processing for running advanced application programs efficiently,reliably and quickly.
 The term applies especially to systems that function above a teraflop or 1012 floating-point operations per second.
 Technically a supercomputer is a HPC system that performs at or near the currentlyhighest operational rate for computers.
 Supercomputers work at more than a petaflop or 1015 floating-point operations persecond. This improvement was driven mainly by the demands from scientific,engineering, and manufacturing communities.

1.2.1.3 High-Throughput Computing
 The development of market-oriented high-end computing systems is undergoing astrategic change from an HPC paradigm to an HTC paradigm.
 HTC paradigm pays more attention to high-flux computing. The main application forhigh-flux computing is in Internet searches and web services by millions or more userssimultaneously.
 The performance goal thus shifts to measure high throughput or the number of taskscompleted per unit of time.
 HTC technology needs to not only improve in terms of batch processing speed, but alsoaddress the acute problems of cost, energy savings, security, and reliability at manydata and enterprise computing centers.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 5

1.2.1.4 Three New Computing Paradigms
 Virtualization
 Cloud computing
 Internet of ThingsAdvances in virtualization make it possible to see the growth of Internet clouds as anew computing paradigm. The maturity of radio-frequency identification (RFID), GlobalPositioning System (GPS), and sensor technologies has triggered the development of theInternet of Things (IoT).

1.2.1.5 Computing Paradigm DistinctionsThe following list defines the terms Centralized computing, Parallel computing,Distributed computing and Cloud computing more clearly
Centralized computing:

 In this paradigm all computer resources are centralized in one physical system.
 All resources (processors, memory, and storage) are fully shared and tightly coupledwithin one integrated OS.
 Many data centers and supercomputers are centralized systems.

Parallel computing
 In this all processors are either tightly coupled with centralized shared memory orloosely coupled with distributed memory.
 Interprocessor communication is accomplished through shared memory or viamessage passing.
 This is referred as parallel processing. A computer system capable of parallelcomputing is commonly known as a parallel computer.
 Programs running in a parallel computer are called parallel programs. The process ofwriting parallel programs is often referred to as parallel programming.

Distributed computing
 A distributed system consists of multiple autonomous computers, each having its ownprivate memory, communicating through a computer network.
 Information exchange is accomplished through message passing.
 A computer program that runs in a distributed system is known as a distributedprogram.
 The process of writing distributed programs is referred to as distributedprogramming.

Cloud computing
 An Internet cloud of resources can be either a centralized or a distributed computingsystem.
 The cloud applies parallel or distributed computing, or both.
 Clouds can be built with physical or virtualized resources over large data centers thatare centralized or distributed.
 Cloud computing to be a form of utility computing or service computing.

Introduction to Grid Computing

Page 6 Under Regulation 2013 Anna University

Other Computing Paradigm
 Concurrent computing or concurrent programming typically refer to the union ofparallel computing and distributing computing, although biased practitioners mayinterpret them differently.
 Ubiquitous computing refers to computing with pervasive devices at any place andtime using wired or wireless communication. The Internet of Things (IoT) is anetworked connection of everyday objects including computers, sensors, humans, etc.The IoT is supported by Internet clouds to achieve ubiquitous computing with anyobject at any place and time.
 Internet computing is even broader and covers all computing paradigms over theInternet.

1.2.1.6 Distributed System FamiliesSince the mid-1990s, technologies for building P2P networks and networks of clustersestablish wide area computing infrastructures, known as computational grids or data grids.Internet clouds are the result of moving desktop computing to service-oriented computingusing server clusters and huge databases at data centers. Grids and clouds are disparitysystems that place great emphasis on resource sharing in hardware, software, and data sets.Massively distributed systems are intended to exploit a high degree of parallelism orconcurrency among many machines.In October 2010, the highest performing cluster machine was built in China with86016 CPU processor cores and 3,211,264 GPU cores in a Tianhe-1Asystem. The largestcomputational grid connects up to hundreds of server clusters. A typical P2P network mayinvolve millions of client machines working simultaneously. Experimental cloud computingclusters have been built with thousands of processing nodes.In the future, both HPC and HTC systems will demand multicore or many-coreprocessors that can handle large numbers of computing threads per core. Both HPC and HTCsystems emphasize parallelism and distributed computing. Future HPC and HTC systems mustbe able to satisfy this huge demand in computing power in terms of throughput, efficiency,scalability, and reliability. The system efficiency is decided by speed, programming, and energyfactors (i.e., throughput per watt of energy consumed). Meeting these goals requires yieldingthe following design objectives:
 Efficiency measures the utilization rate of resources in an execution model byexploiting massive parallelism in HPC. For HTC, efficiency is more closely related to jobthroughput, data access, storage, and power efficiency.
 Dependability measures the reliability and self-management from the chip to thesystem and application levels. The purpose is to provide high-throughput service withQuality of Service (QoS) assurance, even under failure conditions.
 Adaptation in the programming model measures the ability to support billions of jobrequests over massive data sets and virtualized cloud resources under variousworkload and service models.
 Flexibility in application deployment measures the ability of distributed systems torun well in both HPC (science and engineering) and HTC (business) applications.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 7

1.2.2 Scalable Computing Trends and New ParadigmsSeveral predictable trends in technology are known to drive computing applications. Infact, designers and programmers want to predict the technological capabilities of futuresystems.
1.2.2.1 Degrees of Parallelism

 Bit-Level Parallelism (BLP) converts bit-serial processing to word level processinggradually.
 Instruction-Level Parallelism (ILP) the processor executes multiple instructionssimultaneously rather than only one instruction at a time.

 ILP practiced through pipelining, superscalar computing, VLIW (very longinstruction word) architectures, and multithreading.
 ILP requires branch prediction, dynamic scheduling, speculation, and compilersupport to work efficiently.

 Data-Level Parallelism (DLP) was made popular through SIMD (single instruction,multiple data) and vector machines using vector or array types of instructions. DLPrequires even more hardware support and compiler assistance to work properly.
 Task-Level Parallelism (TLP) was made popular when multicore processors and chipmultiprocessors (CMPs) are introduced.
 Job-Level parallelism (JLP) as we move from parallel processing to distributedprocessing, we will see an increase in computing granularity to job-level parallelism(JLP). It is fair to say that coarse-grain parallelism is built on top of fine-grainparallelism.A modern processor explores all of the aforementioned parallelism types. In fact, BLP,ILP, and DLP are well supported by advances in hardware and compilers. However, TLP is farfrom being very successful due to difficulty in programming and compilation of code forefficient execution on multicore CMPs.

1.2.2.2 Innovative ApplicationsBoth HPC and HTC systems desire transparency in data access, resource allocation,process location, concurrency in execution, job replication, and failure recovery to both usersand system management. Table 1.1 highlights a few key applications that have driven thedevelopment of parallel and distributed systems over the years. All applications demandcomputing economics, web-scale data collection, system reliability, and scalable performance.For example, distributed transaction processing is often practiced in the banking and financeindustry. Transactions represent 90 percent of the existing market for reliable bankingsystems. Users must deal with multiple database servers in distributed transactions.Maintaining the consistency of replicated transaction records is crucial in real-time bankingservices. Other complications include lack of software support, network saturation, andsecurity threats in these applications.

Introduction to Grid Computing

Page 8 Under Regulation 2013 Anna University

Table 1.1 Applications of High-Performance and High-Throughput Systems

Domain Specific ApplicationsScience and Engineering Scientific simulation, genomic analysis etc
 Earthquake prediction, global warming, weatherforecasting etcBusiness, Education, ServiceIndustry and Health Telecommunication, content delivery, e-commerce etc
 Banking, stock exchange, transaction processing etc
 Air care traffic control, electric power grids, Distanceeducation etc
 Health care, hospital automation, telemedicine etcInternet web services andGovernment applications Internet search, data centers, decision making systemetc
 Traffic monitoring, worm containment, cyber securityetc
 Digital government, online tax return processing, socialnetworking etcMission Critical applications Military command and control, intelligent systems,crisis management

1.2.2.3 The Trend toward Utility ComputingFigure 1.2 identifies major computing paradigms to facilitate the study of distributedsystems and their applications. These paradigms share some common characteristics.
 First, they are all ubiquitous in daily life. Reliability and scalability are two majordesign objectives in these computing models.
 Second, they are aimed at autonomic operations that can be self-organized to supportdynamic discovery.
 Finally, these paradigms are composable with QoS and SLAs (service-levelagreements).

Figure 1.3 The vision of computer utilities in modern distributed computing
systems

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 9

Utility computing focuses on a business model in which customers receive computingresources from a paid service provider. All grid/cloud platforms are regarded as utility serviceproviders. However, cloud computing offers a broader concept than utility computing.Distributed cloud applications run on any available servers in some edge networks. Majortechnological challenges include all aspects of computer science and engineering. For example,users demand new network efficient processors, scalable memory and storage schemes,distributed OS, middleware for machine virtualization, new programming models, effectiveresource management, and application program development. These hardware and softwaresupports are necessary to build distributed systems that explore massive parallelism at allprocessing levels.
1.2.2.4 The Hype Cycle of New TechnologiesAny new and emerging computing and information technology may go through a hypecycle, as illustrated in Figure 1.3. This cycle shows the expectations for the technology at fivedifferent stages.

 The expectations rise sharply from the trigger period to a high peak of inflatedexpectations.
 Through a short period of disillusionment, the expectation may drop to a valley andthen increase steadily over a long enlightenment period to a plateau of productivity.
 The number of years for an emerging technology to reach a certain stage is marked byspecial symbols. The hollow circles indicate technologies that will reach mainstreamadoption in two years.
 The gray circles represent technologies that will reach mainstream adoption in two tofive years.
 The solid circles represent those that require five to 10 years to reach mainstreamadoption, and the triangles denote those that require more than 10 years.
 The crossed circles represent technologies that will become obsolete before they reachthe plateau.

Figure 1.4 Hype cycle for Emerging Technologies, 2010
1.2.3 The Internet of Things and Cyber-Physical Systems

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 9

Utility computing focuses on a business model in which customers receive computingresources from a paid service provider. All grid/cloud platforms are regarded as utility serviceproviders. However, cloud computing offers a broader concept than utility computing.Distributed cloud applications run on any available servers in some edge networks. Majortechnological challenges include all aspects of computer science and engineering. For example,users demand new network efficient processors, scalable memory and storage schemes,distributed OS, middleware for machine virtualization, new programming models, effectiveresource management, and application program development. These hardware and softwaresupports are necessary to build distributed systems that explore massive parallelism at allprocessing levels.
1.2.2.4 The Hype Cycle of New TechnologiesAny new and emerging computing and information technology may go through a hypecycle, as illustrated in Figure 1.3. This cycle shows the expectations for the technology at fivedifferent stages.

 The expectations rise sharply from the trigger period to a high peak of inflatedexpectations.
 Through a short period of disillusionment, the expectation may drop to a valley andthen increase steadily over a long enlightenment period to a plateau of productivity.
 The number of years for an emerging technology to reach a certain stage is marked byspecial symbols. The hollow circles indicate technologies that will reach mainstreamadoption in two years.
 The gray circles represent technologies that will reach mainstream adoption in two tofive years.
 The solid circles represent those that require five to 10 years to reach mainstreamadoption, and the triangles denote those that require more than 10 years.
 The crossed circles represent technologies that will become obsolete before they reachthe plateau.

Figure 1.4 Hype cycle for Emerging Technologies, 2010
1.2.3 The Internet of Things and Cyber-Physical Systems

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 9

Utility computing focuses on a business model in which customers receive computingresources from a paid service provider. All grid/cloud platforms are regarded as utility serviceproviders. However, cloud computing offers a broader concept than utility computing.Distributed cloud applications run on any available servers in some edge networks. Majortechnological challenges include all aspects of computer science and engineering. For example,users demand new network efficient processors, scalable memory and storage schemes,distributed OS, middleware for machine virtualization, new programming models, effectiveresource management, and application program development. These hardware and softwaresupports are necessary to build distributed systems that explore massive parallelism at allprocessing levels.
1.2.2.4 The Hype Cycle of New TechnologiesAny new and emerging computing and information technology may go through a hypecycle, as illustrated in Figure 1.3. This cycle shows the expectations for the technology at fivedifferent stages.

 The expectations rise sharply from the trigger period to a high peak of inflatedexpectations.
 Through a short period of disillusionment, the expectation may drop to a valley andthen increase steadily over a long enlightenment period to a plateau of productivity.
 The number of years for an emerging technology to reach a certain stage is marked byspecial symbols. The hollow circles indicate technologies that will reach mainstreamadoption in two years.
 The gray circles represent technologies that will reach mainstream adoption in two tofive years.
 The solid circles represent those that require five to 10 years to reach mainstreamadoption, and the triangles denote those that require more than 10 years.
 The crossed circles represent technologies that will become obsolete before they reachthe plateau.

Figure 1.4 Hype cycle for Emerging Technologies, 2010
1.2.3 The Internet of Things and Cyber-Physical Systems

Introduction to Grid Computing

Page 10 Under Regulation 2013 Anna University

Internet of Things and the cyber physical systems are the evolutionary trendsemphasize the extension of the Internet to everyday objects.
1.2.3.1 The Internet of ThingsThe concept of the IoT was introduced in 1999 at MIT.

 The IoT refers to the networked interconnection of everyday objects, tools, devices, orcomputers. The idea is to tag every object using RFID or a related sensor or electronictechnology such as GPS.
 One can view the IoT as a wireless network of sensors that interconnect all things inour daily life. These things can be large or small and they vary with respect to time andplace.
 The IoT needs to be designed to track 100 trillion static or moving objectssimultaneously. The IoT demands universal addressability of all of the objects orthings. To reduce the complexity of identification, search, and storage, one can set thethreshold to filter out fine-grain objects.

Communication Pattern in IoTCommunication can be made between people and things or among the thingsthemselves. Three communication patterns co-exist: namely
 H2H (human-to-human)
 H2T (human-tothing)
 and T2T (thing-to-thing)Here things include machines such as PCs and mobile phones. The idea here is toconnect things (including human and machine objects) at any time and any place intelligentlywith low cost. Any place connections include at the PC, indoor (away from PC), outdoors, andon the move. Any time connections include daytime, night, outdoors and indoors, and on themove as well.
 The dynamic connections will grow exponentially into a new dynamic network ofnetworks, called the Internet of Things (IoT).
 Cloud computing researchers expect to use the cloud and future Internet technologiesto support fast, efficient, and intelligent interactions among humans, machines, andany objects on Earth.
 A smart Earth should have intelligent cities, clean water, efficient power, convenienttransportation, good food supplies, responsible banks, fast telecommunications, greenIT, better schools, good health care, abundant resources, and so on.

1.2.3.2 Cyber-Physical Systems
 A cyber-physical system (CPS) is the result of interaction between computationalprocesses and the physical world.
 A CPS integrates “cyber” (heterogeneous, asynchronous) with “physical” (concurrentand information-dense) objects.
 A CPS merges the “3C” technologies of computation, communication, and control intoan intelligent closed feedback system between the physical world and the informationworld.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 11

 CPS emphasizes exploration of virtual reality (VR) applications in the physical world.
1.3. Technologies for network based systemsIn this we will focus on viable approaches to building distributed operating systems forhandling massive parallelism in a distributed environment.
1.3.1 Multicore CPUs and Multithreading TechnologiesThe growth of component and network technologies over the past 30 years crucial tothe development of HPC and HTC systems. In Figure 1.5, processor speed is measured inmillions of instructions per second (MIPS) and network bandwidth is measured in megabitsper second (Mbps) or gigabits per second (Gbps). The unit GE refers to 1 Gbps Ethernetbandwidth.

Figure 1.5 Improvement in processor and network technologies over 33 years

1.3.1.1 Advances in CPU Processors
 Today, advanced CPUs or microprocessor chips assume a multicore architecture withdual, quad, six, or more processing cores. These processors exploit parallelism at ILPand TLP levels.
 Processor speed growth is plotted in the upper curve in Figure 1.5 across generationsof microprocessors or CMPs.
 The clock rate for these processors increased from 10 MHz for the Intel 286 to 4 GHzfor the Pentium 4 in 30 years.
 The clock rate reached its limit on CMOS-based chips due to power limitations. Clockrate will not continue to improve unless chip technology matures.
 This limitation is attributed primarily to excessive heat generation with high frequencyor high voltages.
 The ILP is highly exploited in modern CPU processors. ILP mechanisms includemultiple-issue superscalar architecture, dynamic branch prediction, and speculative

Introduction to Grid Computing

Page 12 Under Regulation 2013 Anna University

execution, among others. These ILP techniques demand hardware and compilersupport.
 DLP and TLP are highly explored in graphics processing units (GPUs) that adoptmany-core architecture with hundreds to thousands of simple cores.
 Both multi-core CPU and many-core GPU processors can handle multiple instructionthreads at different magnitudes.

Figure 1.6 Schematic of a modern multicore CPU chip using a hierarchy of caches,
where L1 cache is private to each core, on-chip L2 cache is shared and L3 cache
or DRAM is off the chip.Figure 1.6 shows the architecture of a typical multicore processor. Each core isessentially a processor with its own private cache (L1 cache). Multiple cores are housed in thesame chip with an L2 cache that is shared by all cores. In the future, multiple CMPs could bebuilt on the same CPU chip with even the L3 cache on the chip. Multicore and multithreadedCPUs are equipped with many high-end processors, including the Intel i7, Xeon, AMD Opteron,Sun Niagara, IBM Power 6, and X cell processors. Each core could be also multithreaded. Forexample, the Niagara II is built with eight cores with eight threads handled by each core. Thisimplies that the maximum ILP and TLP that can be exploited in Niagara is 64 (8 × 8 = 64).

1.3.1.2 Multicore CPU and Many-Core GPU Architectures
 Multicore CPUs may increase from the tens of cores to hundreds or more in the future.And the CPU has reached its limit in terms of exploiting massive DLP due to theabovementioned memory wall problem.
 This has triggered the development of many-core GPUs with hundreds or more thincores. Both IA-32 and IA-64 instruction set architectures are built into commercialCPUs. Now, x-86 processors have been extended to serve HPC and HTC systems insome high-end server processors.
 Many RISC processors have been replaced with multicore x-86 processors and many-core GPUs in the Top 500 systems. This trend indicates that x-86 upgrades willdominate in data centers and supercomputers.
 The GPU also has been applied in large clusters to build supercomputers in MPPs.
 In the future, the processor industry is keen to develop asymmetric or heterogeneouschip multiprocessors that can house both fat CPU cores and thin GPU cores on thesame chip.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 13

1.3.1.3 Multithreading TechnologyConsider in Figure 1.7 the dispatch of five independent threads of instructions to fourpipelined data paths (functional units) in each of the following five processor categories, fromleft to right: a four issue superscalar processor, a fine-grain multithreaded processor, a coarse-grain multithreaded processor, a two-core CMP, and a simultaneous multithreaded (SMT)processor. The superscalar processor is single-threaded with four functional units. Each of thethree multithreaded processors is four-way multithreaded over four functional data paths. Inthe dual-core processor, assume two processing cores, each a single-threaded two-waysuperscalar processor.

Figure 1.7 Five micro-architectures in modern CPU processors that exploit ILP and TLP
supported by multicore and multithreading technologies.

 Instructions from different threads are distinguished by specific shading patterns forinstructions from five independent threads.
 Only instructions from the same thread are executed in a superscalar processor.
 Fine-grain multithreading switches the execution of instructions from differentthreads per cycle.
 Course-grain multithreading executes many instructions from the same thread forquite a few cycles before switching to another thread.
 The multicore CMP executes instructions from different threads completely.
 The SMT allows simultaneous scheduling of instructions from different threads in thesame cycle.These execution patterns closely mimic an ordinary program. The blank squarescorrespond to no available instructions for an instruction data path at a particular processor

Introduction to Grid Computing

Page 14 Under Regulation 2013 Anna University

cycle. More blank cells imply lower scheduling efficiency. The maximum ILP or maximum TLPis difficult to achieve at each processor cycle.
1.3.2 GPU Computing to Exascale and Beyond

 A GPU is a graphics coprocessor or accelerator mounted on a computer’s graphics cardor video card. A GPU offloads the CPU from tedious graphics tasks in video editingapplications.
 GPU chips can process a minimum of 10 million polygons per second, and are used innearly every computer on the market today.
 Some GPU features were also integrated into certain CPUs. Traditional CPUs arestructured with only a few cores. For example, the Xeon X5670 CPU has six cores.However, a modern GPU chip can be built with hundreds of processing cores.
 Unlike CPUs, GPUs have a throughput architecture that exploits massive parallelism byexecuting many concurrent threads slowly, instead of executing a single long thread ina conventional microprocessor very quickly.
 Lately, parallel GPUs or GPU clusters got lot of attention against the use of CPUs withlimited parallelism. General-purpose computing on GPUs, known as GPGPUs, hasappeared in the HPC field.

1.3.2.1 How GPUs Work
 Early GPUs functioned as coprocessors attached to the CPU.
 Each core on a GPU can handle eight threads of instructions. This translates to havingup to 1,024 threads executed concurrently on a single GPU. This is true massive

parallelism, compared to only a few threads that can be handled by a conventional CPU.
 The CPU is optimized for latency caches, while the GPU is optimized to deliver much

higher throughput with explicit management of on-chip memory.
 Modern GPUs are not restricted to accelerated graphics or video coding. They are usedin HPC systems to power supercomputers with massive parallelism at multicore andmultithreading levels.
 GPUs are designed to handle large numbers of floating-point operations in parallel.
 The GPU offloads the CPU from all data-intensive calculations, not just those that arerelated to video processing.Conventional GPUs are widely used in mobile phones, game consoles, embeddedsystems, PCs, and servers. The NVIDIA CUDA Tesla or Fermi is used in GPU clusters or in HPCsystems for parallel processing of massive floating-pointing data.

1.3.2.2 GPU Programming ModelFigure 1.8 shows the interaction between a CPU and GPU in performing parallelexecution of floating-point operations concurrently. The CPU is the conventional multicoreprocessor with limited parallelism to exploit. The GPU has a many-core architecture that hashundreds of simple processing cores organized as multiprocessors. Each core can have one ormore threads. Essentially, the CPU’s floating-point kernel computation role is largely offloadedto the many-core GPU. The CPU instructs the GPU to perform massive data processing. Thebandwidth must be matched between the on-board main memory and the on-chip GPU

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 15

memory. This process is carried out in NVIDIA’s CUDA programming using the GeForce 8800or Tesla and Fermi GPUs.

Figure 1.8 The use of a GPU along with a CPU for massively parallel execution in
hundreds or thousands of processing coresIn the future, thousand-core GPUs may appear in Exascale (Eflops or 1018 flops)systems. This reflects a trend toward building future MPPs with hybrid architectures of bothtypes of processing chips. In a DARPA report published in September 2008, four challenges areidentified for Exascale computing: (1) energy and power, (2) memory and storage, (3)concurrency and locality, and (4) system resiliency.
1.3.2.3 Power Efficiency of the GPUIn the future Power and massive parallelism are the major benefits of GPUs over CPUs.By extrapolating current technology and computer architecture, it was estimated that 60Gflops/watt per core is needed to run an exaflops system. Power constrains what we can putin a CPU or GPU chip. Dally has estimated that the CPU chip consumes about 2 nJ/instruction,while the GPU chip requires 200 pJ/instruction, which is 1/10 less than that of the CPU. TheCPU is optimized for latency in caches and memory, while the GPU is optimized for throughputwith explicit management of on-chip memory.

Figure 1.9 The GPU performance (middle line, measured 5 Gflops/W/core in 2011),
compared with the lower CPU performance (lower line measured 0.8 Gflops/W/core in
2011) and the estimated 60 Gflops/W/core performance in 2011 for the Exascale (EF in
upper curve) in the futureFigure 1.9 compares the CPU and GPU in their performance/power ratio measured inGflops/watt per core. In 2010, the GPU had a value of 5 Gflops/watt at the core level,compared with less than 1 Gflop/watt per CPU core. This may limit the scaling of futuresupercomputers. However, the GPUs may close the gap with the CPUs. Data movementdominates power consumption. One needs to optimize the storage hierarchy and tailor the

Introduction to Grid Computing

Page 16 Under Regulation 2013 Anna University

memory to the applications. We need to promote selfaware OS and runtime support and buildlocality-aware compilers and auto-tuners for GPU-based MPPs. This implies that both powerand software are the real challenges in future parallel and distributed computing systems.
1.3.3.2 Disks and Storage TechnologyThe rapid growth of flash memory and solid-state drives (SSDs) are the future of HPCand HTC systems. A typical SSD can handle 300,000 to 1 million write cycles per block. SSD canlast for several years, even under conditions of heavy write usage. Flash and SSD willdemonstrate impressive speedups in many applications.

Figure 1.10 Improvement in memory and disk technologies over 33 years. The
Seagate Barracuda XT disk has a capacity of 3 TB in 2011.Eventually, power consumption, cooling, and packaging will limit large systemdevelopment. Power increases linearly with respect to clock frequency and quadratic ally withrespect to voltage applied on chips. Clock rate cannot be increased indefinitely. Loweredvoltage supplies are very much in demand. In 2011, the SSDs are still too expensive to replacestable disk arrays in the storage market.

1.3.3.3 System-Area InterconnectsThe nodes in small clusters are mostly interconnected by an Ethernet switch or a localarea network (LAN). As Figure 1.11 shows, a LAN typically is used to connect client hosts tobig servers. A storage area network (SAN) connects servers to network storage such as diskarrays. Network attached storage (NAS) connects client hosts directly to the disk arrays. Allthree types of networks often appear in a large cluster built with commercial networkcomponents. If no large distributed storage is shared, a small cluster could be built with a

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 17

multiport Gigabit Ethernet switch plus copper cables to link the end machines. All three typesof networks are commercially available.

Figure 1.11 Three interconnection networks for connecting servers, client hosts, and
storage devices; the LAN connects client hosts and servers, the SAN connects servers
with disk arrays, and the NAS connects clients with large storage systems in the
network environment.

1.3.3.4 Wide-Area NetworkingThe lower curve in Figure 1.10 plots the rapid growth of Ethernet bandwidth from 10Mbps in 1979 to 1 Gbps in 1999 and 40 ~ 100 GE in 2011. It has been speculated that 1 Tbpsnetwork links will become available by 2013. An increase factor of two per year on networkperformance was reported, which is faster than Moore’s law on CPU speed doubling every 18months. The implication is that more computers will be used concurrently in the future. High-bandwidth networking increases the capability of building massively distributed systems. TheIDC 2010 report predicted that both InfiniBand and Ethernet will be the two majorinterconnect choices in the HPC arena. Most data centers are using Gigabit Ethernet as theinterconnect in their server clusters.
1.3.4 Virtual Machines and Virtualization Middleware

 A conventional computer has a single OS image. This offers a rigid architecture thattightly couples application software to a specific hardware platform. Some softwarerunning well on one machine may not be executable on another platform with adifferent instruction set under a fixed OS.
 Virtual machines (VMs) offer novel solutions to underutilized resources, applicationinflexibility, software manageability, and security concerns in existing physicalmachines.
 To build large clusters, grids, and clouds, need to access large amounts of computing,storage, and networking resources in a virtualized manner.
 Virtualization aggregates those resources, and hopefully, offers a single system image.Figure 1.12 illustrates the architectures of three VM configurations.

Introduction to Grid Computing

Page 18 Under Regulation 2013 Anna University

Figure 1.12 Three VM architectures in (b), (c), and (d), compared with the traditional
physical machine shown in (a).

1.4.4.1 Virtual Machines
 The VM can be provisioned for any hardware system.
 The VM is built with virtual resources managed by a guest OS to run a specificapplication.
 Between the VMs and the host platform, one needs to deploy a middleware layer calleda virtual machine monitor (VMM).
 The VM approach offers hardware independence of the OS and applications. The userapplication running on its dedicated OS could be bundled together as a virtualappliance that can be ported to any hardware platform.
 The VM could run on an OS different from that of the host computer.

Hypervisor approach- different architectures:
 Bare-metal VM- the hypervisor handles the bare hardware (CPU, memory, and I/O)directly.For example the hardware has x-86 architecture running the Windows system. Theguest OS could be a Linux system and the hypervisor is the XEN system.
 Host VM -VMM runs in non privileged mode. The host OS need not be modified.
 Dual mode VM - part of the VMM runs at the user level and another part runs at thesupervisor level. In this case, the host OS may have to be modified to some extent.
 Multiple VMs can be ported to a given hardware system to support the virtualizationprocess.

1.4.4.2 VM Primitive OperationsThe VMM provides the VM abstraction to the guest OS. With full virtualization, theVMM exports a VM abstraction identical to the physical machine.
 First, the VMs can be multiplexed between hardware machines.
 Second, a VM can be suspended and stored in stable storage.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 19

 Third, a suspended VM can be resumed or provisioned to a new hardware platform.
 Finally, a VM can be migrated from one hardware platform to another.

Figure 1.13 VM multiplexing, suspension, provision, and migration in a distributed
computing environment

Advantages of VM approach:
 These VM operations enable a VM to be provisioned to any available hardwareplatform.
 They enable flexibility in porting distributed application executions.
 The VM approach will significantly enhance the utilization of server resources.
 Multiple server functions can be consolidated on the same hardware platform toachieve higher system efficiency.

1.4.4.3 Virtual Infrastructures
 Physical resources to compute, storage, and networking (Figure 1.14) are mapped tothe needy applications embedded in various VMs at the top.
 Hardware and software are then separated.
 Virtual infrastructure connects resources to distributed applications.
 Dynamic mapping of system resources to specific applications results in decreasedcosts and increased efficiency and responsiveness.
 Virtualization for server consolidation and containment is a good example of this.

Introduction to Grid Computing

Page 20 Under Regulation 2013 Anna University

Figure 1.14 Growth and cost breakdown of data centers over the years.

1.4.5 Data Center Virtualization for Cloud ComputingCloud architecture is built with commodity hardware and network devices. Almost allcloud platforms choose the popular x86 processors. Low-cost terabyte disks and GigabitEthernet are used to build data centers. Data center design emphasizes the performance/priceratio over speed performance alone. In other words, storage and energy efficiency are moreimportant than shear speed performance.
1.4.5.1 Data Center Growth and Cost Breakdown

 Data Center Growth
 A large data center may be built with thousands of servers and smaller data centersare typically built with hundreds of servers.
 The cost to build and maintain data center servers has increased over the years.

 Cost Break down
 30 percent of data center costs goes toward purchasing servers and disks
 33 percent is attributed to the chiller
 18 percent to the uninterruptible power supply (UPS)
 9 percent to computer room air conditioning (CRAC)
 7 percent to power distribution, lighting, and transformer costs.Thus, about 60 percent of the cost to run a data center is allocated to management andmaintenance. The server purchase cost did not increase much with time. The cost of electricityand cooling did increase from 5 percent to 14 percent in 15 years.

1.4.5.2 Low-Cost Design Philosophy
 High-end switches or routers may be too cost-prohibitive for building data centers.Thus, using high bandwidth networks may not fit the economics of cloud computing.
 Given a fixed budget, commodity switches and networks are more desirable in datacenters.
 The software layer handles network traffic balancing, fault tolerance, andexpandability.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 21

1.4.5.3 Convergence of TechnologiesEssentially, cloud computing is enabled by the convergence of technologies in fourareas:(1) Hardware virtualization and multi-core chips- enable the existence of dynamicconfigurations in the cloud.(2) Utility and grid computing - technologies lay the necessary foundation for computingclouds.(3) SOA, Web 2.0, and WS mashups-of platforms are pushing the cloud another stepforward(4) Atonomic computing and data center automation-operations contribute to the rise ofcloud computing.How to manage and analyze information?
 Data comes from sensors, lab experiments, simulations, individual archives, and theweb in all scales and formats. Preservation, movement, and access of massive data setsrequire generic tools supporting high-performance, scalable file systems, databases,algorithms, workflows, and visualization.
 With science becoming data-centric, a new paradigm of scientific discovery isbecoming based on data-intensive technologies.The Computer Science and Telecommunication Board (CSTB) recommended fosteringtools for data capture, data creation, and data analysis. A cycle of interaction exists among fourtechnical areas.
 First, cloud technology is driven by a surge of interest in data deluge.
 Cloud computing impacts e-science greatly, which explores multicore and parallelcomputing technologies. These two hot areas enable the buildup of data deluge.
 To support data-intensive computing, one needs to address workflows, databases,algorithms, and virtualization issues.

 Second, by linking computer science and technologies with scientists, a spectrum of e-science or e-research applications in biology, chemistry, physics, the social sciences,and the humanities has generated new insights from interdisciplinary activities.
 Cloud computing is a transformative approach as it promises much more than adata center model. It fundamentally changes how we interact with information.The cloud provides services on demand at the infrastructure, platform, orsoftware level.

 Third, at the platform level, MapReduce offers a new programming model thattransparently handles data parallelism with natural fault tolerance capability.
 Iterative MapReduce extends MapReduce to support a broader range of datamining algorithms commonly used in scientific applications.
 The cloud runs on an extremely large cluster of commodity computers. Internal toeach cluster node, multithreading is practiced with a large number of cores inmany-core GPU clusters.

 Finally, Data-intensive science, cloud computing, and multicore computing areconverging and revolutionizing the next generation of computing in architecturaldesign and programming challenges. They enable the pipeline: Data becomesinformation and knowledge, and in turn becomes machine wisdom as desired in SOA.

Introduction to Grid Computing

Page 22 Under Regulation 2013 Anna University

1.5 Clusters of Cooperative ComputersA computing cluster consists of interconnected stand-alone computers which workcooperatively as a single integrated computing resource.
1.5.1 Cluster ArchitectureFigure 1.15 shows the architecture of a typical server cluster built around a low-latency, high bandwidth interconnection network.

 This network can be as simple as a SAN (e.g., Myrinet) or a LAN (e.g., Ethernet).
 To build a larger cluster with more nodes, the interconnection network can be builtwith multiple levels of Gigabit Ethernet, Myrinet, or InfiniBand switches.
 Through hierarchical construction using a SAN, LAN, or WAN, one can build scalableclusters with an increasing number of nodes. The cluster is connected to the Internetvia a virtual private network (VPN) gateway.
 The gateway IP address locates the cluster. The system image of a computer is decidedby the way the OS manages the shared cluster resources.
 Most clusters have loosely coupled node computers.
 All resources of a server node are managed by their own OS. Thus, most clusters havemultiple system images as a result of having many autonomous nodes under differentOS control.

Figure 1.15 A cluster of servers interconnected by a high-bandwidth SAN or LAN with
shared I/O devices and disk arrays; the cluster acts as a single computer attached to the
Internet.

1.5.2 Single-System Image
 An ideal cluster should merge multiple system images into a single-system image (SSI).
 Cluster designers desire a cluster operating system or some middleware to support SSIat various levels, including the sharing of CPUs, memory, and I/O across all clusternodes.
 An SSI is an illusion created by software or hardware that presents a collection ofresources as one integrated, powerful resource.
 SSI makes the cluster appear like a single machine to the user.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 23

 A cluster with multiple system images is nothing but a collection of independentcomputers.
1.5.3 Hardware, Software, and Middleware Support
Hardware

 Clusters exploring massive parallelism are commonly known as MPPs.
 The building blocks are computer nodes (PCs, workstations, servers, or SMP), specialcommunication software such as PVM or MPI, and a network interface card in eachcomputer node.

Software
 Most clusters run under the Linux OS.
 The computer nodes are interconnected by a high-bandwidth network (such as GigabitEthernet, Myrinet, InfiniBand, etc.).

Middleware
 Special cluster middleware supports are needed to create SSI or high availability (HA).
 Both sequential and parallel applications can run on the cluster, and special parallelenvironments are needed to facilitate use of the cluster resources.For example, distributed memory has multiple images. Users may want all distributedmemory to be shared by all servers by forming distributed shared memory (DSM). Many SSIfeatures are expensive or difficult to achieve at various cluster operational levels. Instead ofachieving SSI, many clusters are loosely coupled machines. Using virtualization, one can buildmany virtual clusters dynamically, upon user demand.

1.5.4 Major Cluster Design Issues
 A cluster-wide OS for complete resource sharing is not available yet.
 Middleware or OS extensions were developed at the user space to achieve SSI atselected functional levels. Without this middleware, cluster nodes cannot worktogether effectively to achieve cooperative computing.
 The software environments and applications must rely on the middleware to achievehigh performance.
 The cluster benefits come from scalable performance, efficient message passing, high

system availability, seamless fault tolerance, and cluster-wide job management, assummarized in Table 1.2.
Table 1.2 Critical Cluster Design Issues and Feasible Implementations

Features Functional Characterization Feasible ImplementationsAvailability andSupport Hardware and software support forsustained HA in cluster Failover, failback, check pointing, rollbackrecovery, nonstop OS, etc.Hardware FaultTolerance Automated failure management toeliminate all single points of failure Component redundancy, hot swapping,RAID, multiple power supplies, etc.Single SystemImage (SSI) Achieving SSI at functional level withhardware and software support,middleware, or OS extensions Hardware mechanisms or middlewaresupport to achieve DSM at coherent cachelevelEfficientCommunications To reduce message-passing systemoverhead and hide latencies Fast message passing, active messages,enhanced MPI library, etc.

Introduction to Grid Computing

Page 24 Under Regulation 2013 Anna University

Cluster-wide JobManagement Using a global job management systemwith better scheduling and monitoring Application of single-job managementsystems such as LSF, Codine, etc.Dynamic LoadBalancing Balancing the workload of allprocessing nodes along with failurerecovery Workload monitoring, process migration,job replication and gang scheduling, etc.Scalability andProgrammability Adding more servers to a cluster oradding more clusters to a grid as theworkload or data set increases Use of scalable interconnect, performancemonitoring, distributed executionenvironment, and better softwaretools
1.6. Grid Computing InfrastructuresIn the past 30 years, users have experienced a natural growth path from Internet toweb and grid computing services. Internet services such as the Telnet command enables alocal computer to connect to a remote computer. A web service such as HTTP enables remoteaccess of remote web pages. Grid computing is envisioned to allow close interaction amongapplications running on distant computers simultaneously.
1.6.1 Computational Grids

 A computing grid offers an infrastructure that couples computers,software/middleware, special instruments, and people and sensors together.
 The grid is often constructed across LAN, WAN, or Internet backbone networks at aregional, national, or global scale.
 Enterprises or organizations present grids as integrated computing resources. Theycan also be viewed as virtual platforms to support virtual organizations.
 The computers used in a grid are primarily workstations, servers, clusters, andsupercomputers. Personal computers, laptops, and PDAs can be used as access devicesto a grid system.Figure 1.16 shows an example computational grid built over multiple resource sitesowned by different organizations. The resource sites offer complementary computingresources, including workstations, large servers, a mesh of processors, and Linux clusters tosatisfy a chain of computational needs. The grid is built across various IP broadband networksincluding LANs and WANs already used by enterprises or organizations over the Internet. Thegrid is presented to users as an integrated resource pools as shown in the upper half of thefigure.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 25

Figure 1.16 Computational grid or data grid providing computing utility, data, and
information services through resource sharing and cooperation among participating
organizations.At the server end, the grid is a network. At the client end, we see wired or wirelessterminal devices. The grid integrates the computing, communication, contents, andtransactions as rented services. Enterprises and consumers form the user base, which thendefines the usage trends and service characteristics.
1.6.2 Grid FamiliesGrid technology demands new distributed computing models, software/middlewaresupport, network protocols, and hardware infrastructures. In Table 1.3, grid systems areclassified in essentially two categories: computational or data grids and P2P grids.
Design Issues Computational and Data Grids P2P GridsGrid ApplicationsReported Distributed supercomputing,National Grid initiatives, etc. Open grid with P2P flexibility, allresources from client machinesRepresentativeSystems TeraGrid built in US, ChinaGrid inChina, and the e-Science grid builtin UK JXTA,FightAid@home, SETI@home
DevelopmentLessonsLearned Restricted user groups,middleware bugs, protocols toacquire resources Unreliable user-contributedresources, limited to a few apps
Table 1.4 Two Grid Computing Infrastructures and Representative Systems

1.7 Cloud Computing Over the InternetCloud computing has been defined as “A cloud is a pool of virtualized computerresources. A cloud can host a variety of different workloads, including batch-style backendjobs and interactive and user-facing applications.”
 A cloud allows workloads to be deployed and scaled out quickly through rapidprovisioning of virtual or physical machines.

Introduction to Grid Computing

Page 26 Under Regulation 2013 Anna University

 The cloud supports redundant, self-recovering, highly scalable programming modelsthat allow workloads to recover from many unavoidable hardware/software failures.
 The cloud system should be able to monitor resource use in real time to enablerebalancing of allocations when needed.

1.7.1 Internet CloudsCloud computing
 Applies a virtualized platform with elastic resources on demand by provisioninghardware, software, and data sets dynamically (see Figure 1.18)
 Idea to move desktop computing to a service-oriented platform using server clustersand huge databases at data centers.
 Leverages its low cost and simplicity to benefit both users and providers.
 Enables Machine virtualization with cost-effectiveness.
 Intends to satisfy many user applications simultaneously.
 Ecosystem must be designed to be secure, trustworthy, and dependable.Some computer users think of the cloud as a centralized resource pool. Others considerthe cloud to be a server cluster which practices distributed computing over all the serversused.

Figure 1.18 Virtualized resources from data centers to form an Internet cloud,
provisioned with hardware, software, storage, network, and services for paid users to
run their applications.

1.7.2 The Cloud LandscapeA distributed computing system tends to be owned and operated by an autonomousadministrative domain for on-premises computing needs. These traditional systems haveencountered several performance bottlenecks:
 constant system maintenance
 poor utilization
 and increasing costs associated with hardware/software upgradesCloud computing as an on-demand computing paradigm resolves or relieves us from theseproblems.Figure 1.19 depicts the cloud landscape and major cloud players, based on three cloud servicemodels.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 27

Figure 1.19 Three cloud service models in a cloud landscape of major providers.

Infrastructure as a Service (IaaS)
 This model puts together infrastructures demanded by users namely servers, storage,networks, and the data center fabric.
 The user can deploy and run on multiple VMs running guest OSes on specificapplications.
 The user does not manage or control the underlying cloud infrastructure, but canspecify when to request and release the needed resources.

Platform as a Service (PaaS)
 This model enables the user to deploy user-built applications onto a virtualized cloudplatform.
 PaaS includes middleware, databases, development tools, and some runtime supportsuch as Web 2.0 and Java.
 The platform includes both hardware and software integrated with specificprogramming interfaces.
 The provider supplies the API and software tools. The user is freed from managing thecloud infrastructure.

Software as a Service (SaaS)
 This refers to browser-initiated application software over thousands of paid cloudcustomers.
 The SaaS model applies to business processes, industry applications, consumerrelationship management (CRM), enterprise resources planning (ERP), humanresources (HR), and collaborative applications.
 On the customer side, there is no upfront investment in servers or software licensing.
 On the provider side, costs are rather low, compared with conventional hosting of userapplications.Internet clouds offer four deployment modes: private, public, managed, and hybrid.These modes demand different levels of security implications. The different SLAs imply that

Introduction to Grid Computing

Page 28 Under Regulation 2013 Anna University

the security responsibility is shared among all the cloud providers, the cloud resourceconsumers, and the third party cloud-enabled software providers.The following list highlights eight reasons to adapt the cloud for upgraded Internetapplications and web services:1. Desired location in areas with protected space and higher energy efficiency2. Sharing of peak-load capacity among a large pool of users, improving overall utilization3. Separation of infrastructure maintenance duties from domain-specific applicationdevelopment4. Significant reduction in cloud computing cost, compared with traditional computingparadigms5. Cloud computing programming and application development6. Service and data discovery and content/service distribution7. Privacy, security, copyright, and reliability issues8. Service agreements, business models, and pricing policies
1.8 Software Environments for Distributed Systems and CloudsThis section introduces popular software environments for using distributed and cloudcomputing systems.
1.8.1 Service-Oriented Architecture (SOA)

 In grids/web services, Java, and CORBA, an entity is,
 a service,
 a Java object, and
 a CORBA distributed object.

 The architectures build on the OSI layers that provide the base networkingabstractions.
 On top of this a base software environment .NET or Apache Axis for web services, theJava Virtual Machine for Java, and a broker network for CORBA are present.
 On top of this base environment one would build a higher level environment reflectingthe special features of the distributed computing environment.
 This starts with entity interfaces and inter-entity communication, which rebuild thetop four OSI layers but at the entity and not the bit level.Figure 1.20 shows the layered architecture for distributed entities used in web services andgrid systems.

Figure 1.20 Layered architecture for web services and the grids

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 29

1.8.1.1 Layered Architecture for Web Services and Grids
Layered Architecture

 The Entity interfaces correspond to the Web Services Description Language (WSDL),Java method, and CORBA interface definition language (IDL) specifications indistributed systems.
 These interfaces are linked with customized, high-level communicationsystems in SOAP, RMI, and IIOP
 These communication systems support features including particular messagepatterns (such as Remote Procedure Call or RPC), fault recovery, and specializedrouting.
 These communication systems are built on message-oriented middleware(enterprise bus) infrastructure such as WebSphere MQ or Java Message Service(JMS) which provide rich functionality and support virtualization of routing,senders, and recipients.

 The fault tolerance, the features in the Web Services Reliable Messaging (WSRM)framework mimic the OSI layer capability (as in TCP fault tolerance) modified to matchthe different abstractions (such as messages versus packets, virtualized addressing) atthe entity levels.
 Security is a critical capability that uses the concepts of Internet Protocol Security(IPsec) and secure sockets in the OSI layers. Entity communication is supported byhigher level services for registries, metadata, and management of the entities.

Web Services and Grids
 JNDI (Jini and Java Naming and Directory Interface) illustrating different approacheswithin the Java distributed object model.
 The CORBA Trading Service, UDDI (Universal Description, Discovery, and Integration),LDAP (Lightweight Directory Access Protocol), and ebXML (Electronic Business usingeXtensible Markup Language) are other examples of discovery and information

services.
 Management services include service state and lifetime support; examples includethe CORBA Life Cycle and Persistent states, the different Enterprise JavaBeans models,Jini’s lifetime model, and a suite of web services specifications.

The distributed model has the following advantages:
 offers a “shared memory” model allowing more convenient exchange of information.
 higher performance (from multiple CPUs when communication is unimportant).
 Separation of software functions with software reuse and maintenance.

1.8.1.2 Web Services and ToolsTwo choices of service architecture:
 Web services
 REST systemsBoth web services and REST systems have very distinct approaches to building reliableinteroperable systems.

Introduction to Grid Computing

Page 30 Under Regulation 2013 Anna University

Web Service
 Fully specify all aspects of the service and its environment.
 Specification is carried with communicated messages using Simple Object AccessProtocol (SOAP).
 The hosting environment becomes a universal distributed operating system with fullydistributed capability carried by SOAP messages.
 This approach has been hard to agree on key parts of the protocol and even harder toefficiently implement the protocol by software such as Apache Axis.

REST Systems
 Simplicity and delegates most of the difficult problems to application (implementation-specific) software.
 REST has minimal information in the header, and the message body carries all theneeded information.
 REST architectures are clearly more appropriate for rapid technology environments.
 REST can use XML schemas but not those that are part of SOAP; “XML over HTTP”
 Above the communication and management layers, REST has the ability to composenew entities or distributed programs by integrating several entities together.

Tools
 In CORBA and Java, the distributed entities are linked with RPCs,
 The simplest way to build composite applications is to view the entities as objectsand use the traditional ways of linking them together.

 Java, this could be as simple as writing a Java program with method calls replaced byRemote Method Invocation (RMI),
 CORBA supports a similar model with a syntax reflecting the C++ style of its entity(object) interfaces.
 The term “grid” to refer to a single service or a collection of services, sensors represententities that output data (as messages), and grids and clouds represent collections ofservices that have multiple message-based inputs and outputs.

1.8.1.3 The Evolution of SOA
Service-Oriented Architecture (SOA)

 As shown in Figure 1.21, service-oriented architecture (SOA) has evolved over theyears.
 SOA applies to building grids, clouds, grids of clouds, clouds of grids, clouds of clouds(also known as inter clouds), and systems of systems in general.
 A large number of sensors provide data-collection services, denoted in the figure as SS(sensor service).
 A sensor can be a ZigBee device, a Bluetooth device, a WiFi access point, a personalcomputer, a GPA, or a wireless phone, among other things.
 Raw data is collected by sensor services.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 31

 All the SS devices interact with large or small computers, many forms of grids,databases, the compute cloud, the storage cloud, the filter cloud, the discovery cloud,and so on.
 Filter services (fs in the figure) are used to eliminate unwanted raw data, in order torespond to specific requests from the web, the grid, or web services.
 A collection of filter services forms a filter cloud.
 SOA aims to search for, or sort out, the useful data from the massive amounts of rawdata items. Processing this data will generate useful information, and subsequently, theknowledge for our daily use. In fact, wisdom or intelligence is sorted out of largeknowledge bases.

Figure 1.21 The evolution of SOA: grids of clouds and grids, where “SS” refers to a sensor
service and “fs” to a filter or transforming service.Most distributed systems require a web interface or portal. For raw data collected by alarge number of sensors to be transformed into useful information or knowledge, the datastream may go through a sequence of compute, storage, filter, and discovery clouds. Finally,the inter-service messages converge at the portal, which is accessed by all users. Two exampleportals are OGFCE and HUBzero.

Introduction to Grid Computing

Page 32 Under Regulation 2013 Anna University

1.8.1.3 Grids versus Clouds
 In general, a grid system applies static resources, while a cloud emphasizes elasticresources.
 The differences between grids and clouds are limited only in dynamic resourceallocation based on virtualization and autonomic computing.
 One can build a grid out of multiple clouds. This type of grid can do a better job than apure cloud, because it can explicitly support negotiated resource allocation.
 Thus one may end up building with a system of systems: such as a cloud of clouds, agrid of clouds, or a cloud of grids, or inter-clouds as a basic SOA architecture.

Introduction to Grid Architecture and standards
1.9 Introduction to GridGrid computing has emerged as an important field synonymous to high throughputcomputing (HTC). The importance of grids is defined in terms of the amount of work they areable to deliver over a period of time.
Definition of Grid[1] According to IBM’s definition “grid is a collection of distributed computing resourcesavailable over a local or wide area network that appear to an end user or applicationas one large virtual computing system. The vision is to create virtual dynamicorganizations through secure, coordinated resource-sharing among individuals,institutions, and resources. Grid computing is an approach to distributed computingthat spans not only locations but also organizations, machine architectures, andsoftware boundaries to provide unlimited power, collaboration, and informationaccess to everyone connected to a grid.”[2] According to the Globus Alliance “The grid refers to an infrastructure that enables theintegrated, collaborative use of high-end computers, networks, databases, andscientific instruments owned and managed by multiple organizations. Gridapplications often involve large amounts of data and/or computing and often requiresecure resource sharing across organizational boundaries, and are thus not easilyhandled by today’s Internet and Web infrastructures.”[3] Industry-formulated definition of grid computing is “A computational grid is ahardware and software infrastructure that provides dependable, consistent,pervasive, and inexpensive access to high-end computational capabilities. A grid isconcerned with coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations. The key concept is the ability to negotiateresource-sharing arrangements among a set of participating parties (providers andconsumers) and then to use the resulting resource pool for some purpose. Thesharing that we are concerned with is not primarily file exchange but rather directaccess to computers, software, data, and other resources, as is required by a range ofcollaborative problem-solving and resource-brokering strategies emerging inindustry, science, and engineering. This sharing is, necessarily, highly controlled, withresource providers and consumers defining clearly and carefully just what is shared,who is allowed to share, and the conditions under which sharing occurs. A set ofindividuals and/or institutions defined by such sharing rules form what we call avirtual organization (VO).”

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 33

Grids from Existing Technologies
 Grids have evolved from existing technologies such as distributed computing, webservices, the Internet, various cryptography technologies providing security featuresand virtualization technology.
 The grid technology takes features from these technologies to develop a system thatcan provide computational resources for some specific tasks.
 These tasks can be the simulation of stock markets to predict future trends, scientificresearch such as prediction of earthquakes or serving business needs for anorganization having a geographically distributed presence.
 Grid is an evolutionary technology, which leverages existing IT, infrastructure toprovide high throughput computing.

Virtualization
 Virtualization in grids refers to seamless integration of geographically distributed andheterogeneous systems.
 This enables users to make use of the services provided by the grid in a transparentway the users need not be aware of the location of computing resources.
 So, from the users’ perspective, there is just one point of entry to the grid system. Theyjust have to submit their service request at this node.

Virtual Organization
 Virtual Organization in grid is defined as a “dynamic collection of multipleorganizations providing coordinated resource sharing”.
 The formation of VO is aimed at utilizing computing resources for specific problemsolving .
 Based on the concept of VOs, we review three terms
 The first terms are virtualization, which has already been explained and stemsfrom virtual organizations.
 The second term is heterogeneity is a multi-institutional entity. The organizationsthat form part of a VO may have different resources in terms of hardware,operating system and network bandwidth. So, we infer that a VO is a collection ofheterogeneous resources.
 The third term is dynamic. Organizations can join or leave a VO per theirrequirements and convenience. So a VO is a dynamic entity.

 According to it, a grid should provide resource coordination minus centralized control,it should be based on open standards, and it should provide a nontrivial quality ofservice. A grid can be used for computational purposes (computational grid), forstorage of data on a large scale (data grid), or a combination of both.
1.9.1 Grid versus Other Distributed SystemsThe major differences between grid and other distributed systems based on RemoteMethod Invocation (RMI) and Common Object Request Broker Architecture.

Introduction to Grid Computing

Page 34 Under Regulation 2013 Anna University

Distributed Systems Grid
 Serve the purpose of a singleorganization and have a centralizedcontrol Heterogeneous resources, dynamic andVirtualization
 Heterogeneity is limited to a singleorganization Composed of heterogeneous resourcesfrom multiple organizations
 Static and has no concept ofvirtualization Virtualization and dynamic sharing is notlimited to information, applications andhardware.
 Enable information sharing within asingle organization Grids enable resource sharing among VOs(composed of multiple organizations)
 Resource discovery and monitoring on aglobal scale support is missing indistributed systems Resource discovery and monitoring on aglobal scale
 Less concerned with quality of service.Further they do not have a notion of trustas in grid systems They provide very specialized services andmore concerned with quality of servicehave a notion of trust

1.9.2 Motivations for Using a GridIn this section we discuss the advantages gained by using grids over conventionalsystems. Some of these motivations stem from the definition of grid in terms of VO. The otherscan be explained in terms of the grid as a high throughput computing system. It is important tohave an understanding of these concepts, as they form the basis for the architecture of grids.
1.9.2.1 Enabling Formation of Virtual Organizations

 Grids enable collaboration among multiple organizations for sharing of resources.
 This collaboration is not limited to file exchange and implies direct access tocomputing resources.
 Members of the grid can dynamically be organized into multiple virtual organizations.
 Each of these VOs may have different policies and administrative control.
 All the VOs are part of a large grid and can share resources.
 The resources shared among VOs may be data, special hardware, processingcapability and information dissemination about other resources in the grid.
 VOs hide the complexity of the grid from the user, enabling virtualization ofheterogeneous grid resources.

 Members of a grid can be part of multiple VOs at the same time. Grids can be used todefine security policies for the members enabling prioritization of resources fordifferent users.
1.9.2.2 Fault Tolerance and Reliability
 The grid makes provision for automatic resubmission of jobs to other availableresources when a failure is detected.
 Data grid can be defined as a grid for managing and sharing a large amount ofdistributed data.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 35

Example 1: Suppose a user submits his job for execution at a particular node in the grid. Thejob allocates appropriate resources based on availability and the scheduling policy of the grid.Now suppose that the node, which is executing the job crashes due to some reason.Example 2: Data grids serve multiple purposes. They can be used to increase the file transferspeed. Several copies of data can be created in geographically distributed areas. If a user needsthe data for any computational purpose, it can be accessed from the nearest machine hostingthe data. They increase overall computational efficiency. Further, if some of the machines inthe data grid are down, other machines can provide the necessary backup. If it is known inadvance that a particular machine will be accessing the data more frequently than others, datacan be hosted on a machine near to that machine.Both these examples illustrate the concept of virtualization. In the first example theuser knows nothing about the grid failure. In the second example, the user accessing the datadoes not know which machine in the system serves his/her request.
1.9.2.3 Balancing and Sharing Varied ResourcesBalancing and sharing resources are an important aspect of grids, which provide thenecessary resource management features.
 This aspect enables the grid to evenly distribute the tasks to the available resources.
 Suppose a system in the grid is over-loaded. The grid scheduling algorithm canreschedule some of the tasks to other systems that are idle or less loaded.
 In this way the grid scheduling algorithm transparently transfers the tasks to a lessloaded system thereby making use of the underutilized resources.

1.9.2.4 Parallel Processing[1] Some tasks can be broken into multiple subtasks, each of which could be run on adifferent machine.
 Examples of such tasks can be mathematical modeling, image rendering or 3Danimation. Such applications can be written to run as independent subtasks and thenthe results from each of these subtasks can be combined to produce the desiredoutput.[2] Constraints on dividing the task into subtask, using same data structures, types of tasks
 Limit on the number of subtasks which a task can be divided, limiting the maximumachievable performance increase.
 If two or more of these subtasks are operating on the same set of data structures, thensome locking mechanism must exist so that the data structure does not becomeinconsistent.
 So there exists a constraint on the types of tasks, which can be made to run as a gridapplication and there also exists a limit to which an application can be made grid-enabled.

1.9.2.5 Quality of Service (QoS)A grid can be used in a scenario where users submit their jobs and get the output, andthen they are charged based on some metric like time taken to complete the task. In suchscenarios the services delivered to the user expect certain quality of service.

Introduction to Grid Computing

Page 36 Under Regulation 2013 Anna University

Service Level Agreement (SLA)SLA specifies the minimum quality of service, availability, etc, expected by the user andthe charges levied on those services. SLA can specify the minimum expected up-time for thesystem.
Grid Scheduling Algorithm

 Based on the requirement of the user, his/her task could be given priority over otherusers’ tasks by the grid scheduling algorithm.
 For example, a user may require the services of the grid for a real-time applicationand thus has a more stringent QoS requirement than some other users. So, the gridscheduler could give his/her job more priority than other jobs and thus providethe necessary QoS to the user’s real-time application.

 QoS can also be provided by reserving grid resources for certain jobs. If the resourcereserved for a user’s specific job is free for a while, it can report its status to a resourcemanagement node in the grid. The resource can then be used by the grid for its useuntil it is free.
 For example, if it is a computing resource, it may be used by the grid for executionof other jobs in the grid. As soon as the requirement for the reserved resourcearises, the jobs utilizing these resources are preempted and make way for thehigher priority jobs (the job for which the resources were reserved). Thepreempted job is put in the job queue along with the information on its completionstatus. This job can be scheduled by the grid scheduler once there are availableresources in the grid.Grids are different because they provide such features on a multi institutional level andthus enable management of geographically distributed resources. Distributed systems thatprovide such features generally operate on an organizational level and have a centralizedpoint of control unlike the grids.

1.4 Grid Architecture: Basic ConceptsGrid architecture can be visualized as a layered architecture figure 1.22
 The higher layers are focused on the user (user-centric)
 The lower layers are more focused on computers and networks (hardware-centric)Coordinating multiple resources: ubiquitousinfrastructure services, app-specific distributedservicesSharing single resources: negotiating access,controlling useTalking to things: communication (Internet protocols)& securityControlling things locally: Access to and control of,resources

Figure 1. 22 Layered Grid Architecture

Introduction to Grid Computing

Page 36 Under Regulation 2013 Anna University

Service Level Agreement (SLA)SLA specifies the minimum quality of service, availability, etc, expected by the user andthe charges levied on those services. SLA can specify the minimum expected up-time for thesystem.
Grid Scheduling Algorithm

 Based on the requirement of the user, his/her task could be given priority over otherusers’ tasks by the grid scheduling algorithm.
 For example, a user may require the services of the grid for a real-time applicationand thus has a more stringent QoS requirement than some other users. So, the gridscheduler could give his/her job more priority than other jobs and thus providethe necessary QoS to the user’s real-time application.

 QoS can also be provided by reserving grid resources for certain jobs. If the resourcereserved for a user’s specific job is free for a while, it can report its status to a resourcemanagement node in the grid. The resource can then be used by the grid for its useuntil it is free.
 For example, if it is a computing resource, it may be used by the grid for executionof other jobs in the grid. As soon as the requirement for the reserved resourcearises, the jobs utilizing these resources are preempted and make way for thehigher priority jobs (the job for which the resources were reserved). Thepreempted job is put in the job queue along with the information on its completionstatus. This job can be scheduled by the grid scheduler once there are availableresources in the grid.Grids are different because they provide such features on a multi institutional level andthus enable management of geographically distributed resources. Distributed systems thatprovide such features generally operate on an organizational level and have a centralizedpoint of control unlike the grids.

1.4 Grid Architecture: Basic ConceptsGrid architecture can be visualized as a layered architecture figure 1.22
 The higher layers are focused on the user (user-centric)
 The lower layers are more focused on computers and networks (hardware-centric)Coordinating multiple resources: ubiquitousinfrastructure services, app-specific distributedservicesSharing single resources: negotiating access,controlling useTalking to things: communication (Internet protocols)& securityControlling things locally: Access to and control of,resources

Figure 1. 22 Layered Grid Architecture

Introduction to Grid Computing

Page 36 Under Regulation 2013 Anna University

Service Level Agreement (SLA)SLA specifies the minimum quality of service, availability, etc, expected by the user andthe charges levied on those services. SLA can specify the minimum expected up-time for thesystem.
Grid Scheduling Algorithm

 Based on the requirement of the user, his/her task could be given priority over otherusers’ tasks by the grid scheduling algorithm.
 For example, a user may require the services of the grid for a real-time applicationand thus has a more stringent QoS requirement than some other users. So, the gridscheduler could give his/her job more priority than other jobs and thus providethe necessary QoS to the user’s real-time application.

 QoS can also be provided by reserving grid resources for certain jobs. If the resourcereserved for a user’s specific job is free for a while, it can report its status to a resourcemanagement node in the grid. The resource can then be used by the grid for its useuntil it is free.
 For example, if it is a computing resource, it may be used by the grid for executionof other jobs in the grid. As soon as the requirement for the reserved resourcearises, the jobs utilizing these resources are preempted and make way for thehigher priority jobs (the job for which the resources were reserved). Thepreempted job is put in the job queue along with the information on its completionstatus. This job can be scheduled by the grid scheduler once there are availableresources in the grid.Grids are different because they provide such features on a multi institutional level andthus enable management of geographically distributed resources. Distributed systems thatprovide such features generally operate on an organizational level and have a centralizedpoint of control unlike the grids.

1.4 Grid Architecture: Basic ConceptsGrid architecture can be visualized as a layered architecture figure 1.22
 The higher layers are focused on the user (user-centric)
 The lower layers are more focused on computers and networks (hardware-centric)Coordinating multiple resources: ubiquitousinfrastructure services, app-specific distributedservicesSharing single resources: negotiating access,controlling useTalking to things: communication (Internet protocols)& securityControlling things locally: Access to and control of,resources

Figure 1. 22 Layered Grid Architecture

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 37

 At the base of everything, the bottom layer is the network, which assures theconnectivity for the resources in the Grid.
 On top of it lies the resource layer, made up of the actual resources that are part of theGrid, such as computers, storage systems, electronic data catalogues, and even sensorssuch as telescopes or other instruments, which can be connected directly to thenetwork.
 The middleware layer provides the tools that enable the various elements (servers,storage, networks, etc.) to participate in a unified Grid environment. The middlewarelayer can be thought of as the intelligence that brings the various elements together -the "brain" of the Grid.
 The highest layer of the structure is the application layer, which includes all differentuser applications (science, engineering, and business, financial), portals anddevelopment toolkits supporting the applications. This is the layer that users of thegrid will see.In most common Grid architectures, the application layer also provides the so-called

serviceware, the sort of general management functions such as
 measuring the amount a particular user employs the Grid
 billing for this use
 keeping accounts of who is providing resources and who is using them
 Keeps track of sharing the resources of a variety of institutions amongst large numbersof different users.
 The serviceware is in the top layer, because it is something the user interacts with,whereas the middleware is a "hidden" layer that the user should not have to worryabout.

Figure 1. 23 Layered structure Grid Architecture

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 37

 At the base of everything, the bottom layer is the network, which assures theconnectivity for the resources in the Grid.
 On top of it lies the resource layer, made up of the actual resources that are part of theGrid, such as computers, storage systems, electronic data catalogues, and even sensorssuch as telescopes or other instruments, which can be connected directly to thenetwork.
 The middleware layer provides the tools that enable the various elements (servers,storage, networks, etc.) to participate in a unified Grid environment. The middlewarelayer can be thought of as the intelligence that brings the various elements together -the "brain" of the Grid.
 The highest layer of the structure is the application layer, which includes all differentuser applications (science, engineering, and business, financial), portals anddevelopment toolkits supporting the applications. This is the layer that users of thegrid will see.In most common Grid architectures, the application layer also provides the so-called

serviceware, the sort of general management functions such as
 measuring the amount a particular user employs the Grid
 billing for this use
 keeping accounts of who is providing resources and who is using them
 Keeps track of sharing the resources of a variety of institutions amongst large numbersof different users.
 The serviceware is in the top layer, because it is something the user interacts with,whereas the middleware is a "hidden" layer that the user should not have to worryabout.

Figure 1. 23 Layered structure Grid Architecture

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 37

 At the base of everything, the bottom layer is the network, which assures theconnectivity for the resources in the Grid.
 On top of it lies the resource layer, made up of the actual resources that are part of theGrid, such as computers, storage systems, electronic data catalogues, and even sensorssuch as telescopes or other instruments, which can be connected directly to thenetwork.
 The middleware layer provides the tools that enable the various elements (servers,storage, networks, etc.) to participate in a unified Grid environment. The middlewarelayer can be thought of as the intelligence that brings the various elements together -the "brain" of the Grid.
 The highest layer of the structure is the application layer, which includes all differentuser applications (science, engineering, and business, financial), portals anddevelopment toolkits supporting the applications. This is the layer that users of thegrid will see.In most common Grid architectures, the application layer also provides the so-called

serviceware, the sort of general management functions such as
 measuring the amount a particular user employs the Grid
 billing for this use
 keeping accounts of who is providing resources and who is using them
 Keeps track of sharing the resources of a variety of institutions amongst large numbersof different users.
 The serviceware is in the top layer, because it is something the user interacts with,whereas the middleware is a "hidden" layer that the user should not have to worryabout.

Figure 1. 23 Layered structure Grid Architecture

Introduction to Grid Computing

Page 38 Under Regulation 2013 Anna University

Fabric
 There are other ways to describe this layered structure. Figure 2.23
 The term fabric for all the physical infrastructure of the Grid, including computers andthe communication network.
 Within the middleware layer, distinctions can be made between a layer of resource andconnectivity protocols, and a higher layer of collective services.

Resource and connectivity Protocols
 Resource and connectivity protocols: handle all "Grid specific" network transactionsbetween different computers and other resources on the Grid. Remember that thenetwork used by the Grid is the Internet, the same network used by the Web and bymany other services such as e mail.
 Communication protocols: A myriad of transactions is going on at any instant on theInternet, and computers that are actively contributing to the Grid have to be able torecognize those messages that are relevant to them, and filter out the rest. This is donewith communication protocols, which let the resources speak to each other, enablingexchange of data.
 Authentication protocols: which provide secure mechanisms for verifying theidentity of both users and resources

Collective ServicesThe collective services are also based on protocols: information protocols, whichobtain information about the structure and state of the resources on the Grid, and
management protocols which negotiate access to resources in a uniform way.The services include:

 keeping directories of available resources updated at all times
 brokering resources (which like stock broking, is about negotiating between those whowant to "buy" resources and those who want to "sell")
 monitoring and diagnosing problems on the Grid
 replicating key data so that multiple copies are available at different locations for easeof use
 providing membership/policy services for keeping track on the Grid of who is allowedto do what, when

User ApplicationsThe topmost layer is the applications layer. Applications rely on all the other layersbelow them in order to run on the Grid. To take a fairly concrete example, consider a userapplication that needs to analyze data contained in several independent files. It will have
 obtain the necessary authentication credentials to open the files (resource andconnectivity protocols)
 query an information system and replica catalogue to determine where copies of thefiles in question can currently be found on the Grid, as well as where computational
 resources to do the data analysis are most conveniently located (collective services)

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 39

 submit requests to the fabric - the appropriate computers, storage systems, andnetworks - to extract the data, initiate computations, and provide the results (resourceand connectivity protocols)
 monitor the progress of the various computations and data transfers, notifying theuser when the analysis is complete, and detecting and responding to failure conditions(collective services).

1.4.1 SecuritySecurity forms the vital aspect of grid computing, three most desirable securityfeatures a grid should provide. These are
 Single sign-on means that the user is able to login once using his security credentialsand can then access the service of the grid for a certain duration
 Authentication refers to providing the necessary proof to establish one’s identity. So,when you login to your email account, you authenticate to the server by providing yourusername and password.
 Authorization is the process that checks the privileges assigned to a user. Forexample, a website may have two kinds of user, a guest user and a registered user.A guest user may be allowed to perform basic tasks while the registered user may beallowed to perform a range of tasks based on his preferences. Authorization is performed afterthe identity of a user has been established through authentication. Other components of thegrid that are part of security infrastructure are credential management and delegation ofprivileges.

1.4.2 Resource ManagementA grid must optimize the resources under its disposal to achieve maximum possiblethroughput. Resource management includes submission of a job remotely, checking its statuswhile it is in progress and obtaining the output when it has finished execution.When a job is submitted,
 The available resources are discovered through a directory service.
 Then, the resources are selected to run the individual job.
 This decision is made by another resource management component of the grid,namely, the grid scheduler.
 The scheduling decision can be based on a number of factors.For example, if an application consists of some jobs that need sequential execution because theresult of one job is needed by another job, then the scheduler can schedule these jobssequentially. The scheduling decision can also be based on the priority of the user’s job asspecified in the SLA.

1.4.3 Data ManagementData management in grids needed for managing large amounts of data.This includes
 Secure data access
 Replication and migration of data

Introduction to Grid Computing

Page 40 Under Regulation 2013 Anna University

 Management of metadata
 Indexing
 Data-aware scheduling
 Caching etc.

Data aware-scheduling means that scheduling decisions should take into account thelocation of data. For example, the grid scheduler can assign a job to a resource located close todata instead of transferring large amounts of data over the network, which can havesignificant performance overheads. Suppose the job has been scheduled to run on a systemthat does not have the data needed for the job. This data must be transferred to the systemwhere the job will execute. So, a grid data management module must provide a secure andreliable way to transfer data within the grid.
1.4.4 Information Discovery and MonitoringThe grid scheduler needs to be aware of the available resources to allocate resources forcarrying out a job.This information is obtained from an information discovery service running in the grid.

 It contains a list of resources available for the disposal of the grid and their currentstatus.
 When a grid scheduler queries the information service for the available resources, itcan put constraints such as finding those resources that are relevant and best suitedfor a job.
 By relevance of resource we mean those resources which can be used for the job.The computing capacity needed for a job and the job requires fast CPUs for its execution, weselect only those machines fast enough for the timely completion of the job.The information discovery service can function in two ways.
 It can publish the status of available resources through a defined interface (webservices) or it can be queried for the list of available resources.
 The information discovery service can be organized in a hierarchical fashion, wherethe lower information discovery services provide information to the one situatedabove it.
 The hierarchical structure brings about the flexibility needed for grids, which containsa vast amount of resources, because it can become practically impossible to store theinformation about all the available resources in one place.

1.5 Some Standards for GridIn this section we look at some of the open standards used for implementing a grid.
1.5.1 Web ServicesGrid services, defined by OGSA, are an extension of web services. So, grid service canleverage the available web services specifications. Here we discuss the most basic web servicestandards. The four basic web service specifications are:[1] eXtensible Markup Language (XML) - XML is a markup language whose purpose is tofacilitate sharing of data across different interfaces using a common format. It forms

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 41

the basis of web services. All the messages exchanged in web services adhere to theXML document format.[2] Simple Object Access Protocol (SOAP) - SOAP is a message-based communicationprotocol, which can be used by two parties communicating over the Internet. SOAPmessages are based on XML and are hence platform independent. It forms thefoundation of the web services protocol stack. SOAP messages are transmitted overHTTP. So unlike other technologies like RPC or CORBA, SOAP messages can traverse afirewall. SOAP messages are suitable when small messages are sent. When the size ofmessage increases, the overhead associated with it also increases and hence theefficiency of the communication decreases.[3] Web Service Definition Language (WSDL) - WSDL is an XML document used todescribe the web service interface.A WSDL document describes a web service using the following major elements:a) Port Type - The set of operations performed by the web service. Each operation isdefined by a set of input and output messages.b) Message - It represents the messages used by the web service. It is an abstraction ofthe data being transmitted.c) Types - It refers to the data types defined to describe the message exchange.d) Binding - It specifies the communication protocol used by the web service.e) Port - It defines the binding address for the web service.f) Service - It is used for aggregating a set of related ports[4] Universal Description, Discovery and Integration (UDDI) - UDDI is an XML-basedregistry used for finding a web service on the Internet. It is a specification that allows abusiness to publish information about it and its web services allowing other web servicesto locate this information. A UDDI registry is an XML-based service listing. Each listingcontains the necessary information required to find and bind to a particular web service.
1.5.2 Open Grid Services Architecture (OGSA)Open Grid Services Architecture (OGSA) defines

 a web services based framework for the implementation of a grid.
 It seeks to standardize service provided by a grid such as resource discovery, resourcemanagement, security, etc, through a standard web service interface.
 It also defines the features that are not necessarily needed for the implementation of agrid.OGSA is based on existing web services specifications and adds features to web services tomake it suitable for the grid environment.

1.5.3 Open Grid Services Infrastructure (OGSI)OGSA describes the features that are needed for the implementation of services provided bythe grid, as web services.
 Provides a formal and technical specification needed for the implementation of gridservices.

Introduction to Grid Computing

Page 42 Under Regulation 2013 Anna University

 It provides a description of Web Service Description Language (WSDL), which definesa grid service.
 Provides the mechanisms for creation, management and interaction among gridservices.

1.5.4 Web Services Resource Framework (WSRF)The motivation behind development of WS-Resource Framework is to define a“generic and open framework for modeling and accessing stateful resources using webservices”
 It defines conventions for state management enabling applications to discover andinteract with stateful web services in a standard way.
 Grid-based applications need the notion of state because they often perform a series ofrequests where output from one operation may depend on the result of previousoperations.
 Used to develop such stateful grid services.
 The format of message exchange is defined by the WSDL.

1.5.5 OGSA-DAIOpen Grid Services Architecture-Data Access and Integration (OGSA-DAI) aim is todevelop middleware to provide access and integration to distributed data sources using a grid.
 This middleware provides support for various data sources such as relational and XMLdatabases.
 These data sources can be queried, updated and transformed via OGSA-DAI webservice.
 These web services can be deployed within a grid, thus making the data sources gridenabled.
 The request to OGSA-DAI web service to access a data source is independent of thedata source served by the web service.
 OGSA web services are compliant with Web Services Inter-operability (WS-I) andWSRF specifications, the two most important specifications for web services

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 43

2.1 Grid Architecture and Service ModelingThe grid is a metacomputing infrastructure that brings together computers (PCs,workstations, server clusters, supercomputers, laptops, notebooks, mobile computers, PDAs,etc.) to form a large collection of compute, storage, and network resources to solve large-scalecomputation problems or to enable fast information retrieval by registered users or usergroups. The coupling between hardware and software with special user applications isachieved by leasing the hardware, software, middleware, databases, instruments, andnetworks as computing utilities. Good examples include the renting of expensive special-purpose application software on demand and transparent access to human genome databases.The goal of grid computing is to explore fast solutions for large-scale computingproblems. Grid computing takes advantage of the existing computing resources scattered in anation or internationally around the globe. In grids, resources owned by differentorganizations are aggregated together and shared by many users in collective applications.Grids rely heavy use of LAN/WAN resources across enterprises, organizations, andgovernments. The virtual organizations or virtual supercomputers are new concept derivedfrom grid or cloud computing. These are virtual resources dynamically configured and are notunder the full control of any single user or local administrator.
2.1.1 Grid History and Service FamiliesNetwork-based distributed computing becomes more and more popular among theInternet users. Ever since the 1990s, grids became gradually available to establish large poolsof shared resources. The approach is to link many Internet applications across machineplatforms directly in order to eliminate isolated resource islands.The idea of the grid was pioneered by Ian Foster, Carl Kesselman and Steve Tuecke in a2001 paper. With is ground work, they are often recognized as the fathers of the grids. TheGlobus Project supported by DARPA has promoted the maturity of grid technology with a richcollection of software and middleware tools for grid computing. In 2007, the concept of cloudcomputing was thrown out, which in many ways was extending grid computing throughvirtualized data centers. In this beginning section, we introduce major grid families and reviewthe grid service evolution over the past 15 years.Grids differ from conventional HPC clusters. Cluster nodes are more homogeneousmachines that are better coordinated to work collectively and cooperatively. The grid nodesare heterogeneous computers that are more loosely coupled together over geographicallydispersed sites. In 2001, Forbes Magazine advocated the emergence of the great global grid(GGG) as a new global infrastructure. This GGG evolved from the World Wide Web (WWW)technology we have enjoyed for many years. Four major families of grid computing systemswere suggested by the Forbes GGG categorization as summarized in Table 2.1.

Introduction to Grid Computing

Page 44 Under Regulation 2013 Anna University

Table 2.1 Four Grid Families Identified in the Great Global Grid (GGG)
Grid Family Representative Grid Systems and ReferencesComputational Grids orData Grids TeraGrid (US), EGEE (EU), DataGrid (EU), Grid’5000 (france),ChinaGrid (China), NAS (NASA), LCG (Cern), e-Science (UK), D-Grid (Nordic), FutureGrid (US), etc.Information Grids orKnowledge Grids Semantic Grid, Ontology Platform, BOINC (Berkeley), D4Science,Einsten@Home, Information Power Grid (NASA)Business Grids BEinGrid (EU), HP eSpeak, IBM WebSphere, Sun Grid Engine,Microsoft .NET, etc.P2P/Volunteer Grids SETI@Home, Parasic Grid, FightAIDS@Home, Foldong@Home,GIMPS, etc.
2.1.1.1 Four Grid Service FamiliesMost of today’s grid systems are called computational grids or data grids. Goodexamples are the NSF TeraGrid installed in the United States and the DataGrid built in theEuropean Union. Information or knowledge grids post another grid class dedicated toknowledge management and distributed ontology processing. The Semantic web, also knownas semantic grids, belongs to this faimly.Ontology platform falls into information or knowledge grids. Otherinformation/knowledge grids include the Berkeley BOINC and NASA’s Information PowerGrid. In the business world, we see a family, called business grids, built for businessdata/information processing. These are represented by the HP eSpeak, IBM WebSphere,Microsoft .NET, and Sun One systems. Some business grids are being transformed into Internetclouds. The last grid class includes several grid extensions such as P2P grids and parasiticgrids.
2.1.1.2 Grid ResourcesTable 2.2 summarizes typical resources that are required to perform grid computing.Many existing protocols (IP, TCP, HTTP, FTP, and DNS) or some new communication protocolscan be used to route and transfer data. The resource layer is responsible for sharing singleresources. An interface is needed to claim the static structure and dynamic status of localresources.

Table 2.2 Control Operations and Enquiries for Aggregating Grid Resources
Resources Control Operations EnquiriesComputeresources Starting, monitoring, and controllingthe execution of resultant processes;control over resources: advancereservation

Hardware and softwarecharacteristics; relevant loadinformation: current load and queuestateStorageresources Putting and getting files; control overresources allocated to data transfers:advance reservation Hardware and softwarecharacteristics; relevant loadinformation: available space andbandwidth utilization

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 45

Networkresources Control over resources allocated Network characteristics andloadCoderepositories Managing versioned source and objectcode Software files and compilesupportService catalogs Implementing catalog query and updateoperations: a relationaldatabase Service order information andagreementsTheThe grid should be able to accept resource requests, negotiate the Quality of Service(QoS), and perform the operations specified in user applications. The collective layer handlesthe interactions among a collection of resources. This layer implements functions such asresource discovery, co-allocation, scheduling, brokering, monitoring, and diagnostics. Otherdesired features include replication, grid-enabled programming, workload management,collaboration, software discovery, access authorization, and community accounting andpayment. The application layer comprises mainly user applications. The applications interactwith components in other layers by using well-defined APIs (application programminginterfaces) and SDKs (software development kits).
2.2 Open Grid Services Architecture (OGSA)The OGSA is an open source grid service standard jointly developed by academia andthe IT industry under coordination of a working group in the Global Grid Forum (GGF).

 The standard was specifically developed for the emerging grid and cloud servicecommunities. The OGSA is extended from web service concepts and technologies.
 The standard defines a common framework that allows businesses to build gridplatforms across enterprises and business partners.
 The intent is to define the standards required for both open source and commercialsoftware to support a global grid infrastructure.

2.2.1 OGSA Framework
 The OGSA was built on two basic software technologies:

 Globus Toolkit widely adopted as a grid technology solution for scientific andtechnical computing, and
 Web services (WS 2.0) as a popular standards-based framework for businessand network applications. The

 OGSA is intended to support the creation, termination, management, and invocation ofstateful, transient grid services via standard interfaces and conventions.
 The OGSA framework specifies the physical environment, security, infrastructureprofile, resource provisioning, virtual domains, and execution environment for variousgrid services and API access tools.
 Compared with the layered grid architecture, the OGSA is service-oriented. A service isan entity that provides some capability to its client by exchanging messages.
 The service-oriented architecture (SOA) serves as the foundation of grid computingservices.
 The individual and collective states of resources are specified in this service standard.

Introduction to Grid Computing

Page 46 Under Regulation 2013 Anna University

The standard also specifies interactions between these services within the particularSOA for grids.
 The architecture is not layered, where the implementation of one service is built uponmodules that are logically dependent. One may classify this framework as object-oriented. Many web service standards, semantics, and extensions are applied ormodified in the OGSA.

2.2.2 OGSA InterfacesThe OGSA is centered on grid services. These services demand special well-definedapplication interfaces. These interfaces provide
 resource discovery
 dynamic service creation
 lifetime management
 notification
 manageabilityThe conventions must address naming and upgradeability. Table 2.3 summarizes theinterfaces proposed by the OGSA working group.

Table 2.3 OGSA Grid Service Interfaces Developed by the OGSA Working GroupTwo key properties of a grid service are
 transience - Being transient means the service can be created and destroyeddynamically
 statefulness - refers to the fact that one can distinguish one service instance fromanotherThese properties have significant implications regarding how a grid service is named,discovered, and managed.

2.2.3 Grid Service Handle
 A GSH is a globally unique name that distinguishes a specific grid service instance fromall others.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 47

 The status of a grid service instance could be that it exists now or that it will exist inthe future.
 These instances carry no protocol or instance-specific addresses or supported

protocol bindings. Instead, these information items are encapsulated along with allother instance-specific information.
 In order to interact with a specific service instance, a single abstraction is definedas a GSR, an the instance can change over the lifetime of the service.
 The OGSA employs a “handle-resolution” mechanism for mapping from a GSH to aGSR.
 The GSH must be globally defined for a particular instance. However, the GSH maynot always refer to the same network address. A service instance may beimplemented in its own way, as long as it obeys the associated semantics.

2.2.4 Grid Service Migration
 This is a mechanism for creating new services and specifying assertions regarding thelifetime of a service.
 The OGSA model defines a standard interface, known as a factor, to implement thisreference.
 Any service that is created must address the former services as the reference of laterservices.
 The factory interface is labeled as a Create Service operation in Table 2.3.
 This creates a requested grid service with a specified interface and returns the GSHand initial GSR for the new service instance.
 It should also register the new service instance with a handle resolution service. Eachdynamically created grid service instance is associated with a specified lifetime.

Example: Grid Service Migration Using GSH and GSRFigure 2.1 shows how a service instance may migrate from one location to anotherduring execution. A GSH resolves to a different GSR for a migrated service instance before (onthe left) and after (on the right) the migration at time T. The handle resolver simply returnsdifferent GSRs before and after the migration. The initial lifetime can be extended by aspecified time period by explicitly requesting the client or another grid service acting on theclient’s behalf.

Figure 2.1 A GSH resolving to a different GSR for a migrated service instance before
(shown on the left) and after (on the right) the migration at time T.

Introduction to Grid Computing

Page 48 Under Regulation 2013 Anna University

If the time period expires without having received a reaffirmed interest from a client,the service instance can be terminated on its own and release the associated resourcesaccordingly. The lifetime management enables robust termination and failure detection. Thisis done by clearly defining the lifetime semantics of a service instance. Similarly, a hostingenvironment is guaranteed to consume bounded resources under some system failures. If thetermination time of a service is reached, the hosting environment can reclaim all resourcesallocated.
2.2.5 OGSA Security Models

 The OGSA supports security enforcement at various levels, as shown in Figure 2.2.

Figure 2.2 The OGSA security model implemented at various protection levels

 The grid works in a heterogeneous distributed environment, which is essentiallyopen to the general public.
 It must be able to detect intrusions or stop viruses from spreading by implementingsecure conversations, single logon, access control, and auditing for nonrepudiation.
 At the security policy and user levels want to apply a service or endpoint policy,resource mapping rules, authorized access of critical resources, and privacy protection.
 At the Public Key Infrastructure (PKI) service level, the OGSA demands securitybinding with the security protocol stack and bridging of certificate authorities (CAs),use of multiple trusted intermediaries, and so on. Trust models and secure logging areoften practiced in grid platforms.

2.2.6 Detailed view of OGSA/OGSI
2.2.6.1. Key AspectsThere are two main logical components of OGSA:i. The Web-services-plus-OGSI layer, andii. The OGSA-architected services layer.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 49

Four main layers comprise the OGSA architecture
Grid applications layer

 This layer is the user-visible layer.
 It supports user applications.
 Eventually, a “rich” set of grid-architected services is expected to be developed.

OGSA-architected grid services layer
 Services in this layer include:

 Discovery
 Lifecycle
 State management
 Service Groups
 Factory
 Notification, and
 Handle Map.These services are based on the Web services layer.

 The GGF was working at press time to define many of these architected gridservices in areas such as program execution, data services, and core services.
Web Services layer, plus the OGSI extensions that define grid services

 The OGSI specification defines grid services and builds on standard Web servicestechnology.
 OGSI exploits the mechanisms of Web services such as XML and WSDL to specifystandard interfaces, behaviors, and interaction for all grid resources.
 OGSI extends the definition of Web services to provide capabilities for dynamic,stateful, and manageable Web services that are required to model the resources ofthe grid.

Figure 2.3 Basic functional model for grid environment

Physical and logical resources layer
 The concept of resources is central to OGSA and to grid computing in general.

Introduction to Grid Computing

Page 50 Under Regulation 2013 Anna University

 Resources comprise the capabilities of the grid.
 Physical resources include servers, storage, and network. Above the physical resourcesare logical resources.
 Logical resources provide additional function by virtualizing and aggregating theresources in the physical layer. General-purpose middleware such as file systems,database managers, directories, and workflow managers provide these abstractservices on top of the physical grid.The GGF OGSA working group found it necessary to augment core Web servicesfunctionality to address grid services requirements. OGSI extends Web services by introducing

interfaces and conventions in two main areas

1. “Interfaces.”The dynamic and potentially transient nature of services in a grid:
 Particular service instances may come and go as work is dispatched, as resources areconfigured and provisioned, and as system state changes.
 Therefore, grid services need interfaces to manage the creation, destruction, and life-cycle management of these dynamic services.

2. “State.”Grid services typically have attributes and data associated with them. This is similar inconcept to the traditional structure of objects in object-oriented programming:
 Objects have behavior and data. Likewise, Web services were found to be in need ofbeing extended to support state data associated with grid services.
 Basic Web services are stateless (e.g., add, subtract).
 Most real-world applications involve stateful transactions [e.g., query (sd2), getdata(row3-row17)].
 State is linked to a “handle” or sessionID as a parameter.
 Protocols such as SOAP, SMTP, and FTP use state mechanisms (sessionID, packetheaders, TCP sockets, respectively).Consistent with these two observations, OGSI introduces an interaction model for grid

services. The interaction model provides a uniform way for software developers to model andinteract with grid services by providing interfaces for discovery, life cycle, state management,creation and destruction, event notification, and reference management (these services weredepicted in Figure 2.4)Below, we list interfaces and conventions that OGSI introduces
Factory

 A mechanism (interface) that provides a way to create new grid services.
 Factories may create temporary instances of limited function,

o such as a scheduler creating a service to represent the execution of a particular job;
o or they may create longer-lived services such as a local replica of a frequently useddata set.

 Not all grid services are created dynamically;
o for example, some services might be created as the result of an instance of a

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 51

physical resource in the grid, such as a processor, storage, or network device.

Figure 2.4 OGSA reliance on OGSI

Life cycle
 A mechanism architected to prevent grid services from consuming resourcesindefinitely without requiring a large-scale distributed “garbage collection” scavenger.
 Every grid service has a termination time set by the service creator or factory. Becausegrid services may be transient, grid service instances are created with a specifiedlifetime.
 The lifetime of any particular service instance can be negotiated and extended, asrequired, by components that are dependent on or manage that service.

o In turn, a client with appropriate authorization can use termination timeinformation to check the availability (lease period) of the service; the client canalso request to extend the current lease time by sending a keep-alive messageto the service with a new termination time.
o If the service accepts this request, the lease time can be extended to the newtermination time requested by the client.

 This soft-state life cycle is controlled by appropriate security and policy decisions ofthe service, and the service has the authority to control this behavior
o for example, a service can arbitrarily terminate a service or can extend itstermination time even while the client holds a service reference

State management
 OGSI specifies a framework for representing this state, called service data, and amechanism for inspecting or modifying that state, named Find/SetServiceData.
 OGSI requires a minimal amount of state in service data elements that every gridservice must support, and requires that all services implement theFind/SetServiceData portType.

Service groups
 Service groups are collections of grid services that are indexed (using service data

Introduction to Grid Computing

Page 52 Under Regulation 2013 Anna University

described above) for some specific purpose.
o For example, they might be used to collect all the services that represent theresources in a particular cluster node within the grid.

Notification
 Services interact with one another by exchanging messages based on serviceinvocation.
 The state information (the service data described above) that is modeled for gridservices changes as the system runs.
 Many interactions between grid services require dynamic monitoring of changingstate. Notification applies a traditional publish/subscribe paradigm to this monitoring.
 Grid services support an interface (NotificationSource) to permit other grid services(NotificationSink) to subscribe to changes.
 The internal state of a grid service can keep track that this grid service has receivedone or zero messages.
 This reliable message delivery mechanism guaranteed by the internal state can buildbusiness-oriented transactions.
 In a transient stateful service, OGSA provides a mechanism to capture the stateinformation associated with any operation that fails. If an operation fails, the keep-alive messages cease if there is no service client for invoking this running serviceinstance.
 Then the grid service instance automatically times out and frees the computingresources associated with this service instance

Handle Map
 This deals with service identity.
 When Factories are used to create a new instance of a Grid Service, the Factory returnsthe identity of the newly instantiated service.
 This identity is composed of two parts: a Grid Service

o Handle (GSH) and
o a Grid Service Reference (GSR).

 A GSH provides a reference the grid service indefinitely; GSR can change within thegrid services lifetime.The Handle Map interface provides a way to obtain a GSR given a GSH.
 The user application invokes create Grid Service requests on the Factory interface tocreate a new service instance.
 The newly created service instance associated with the grid service interface will beautomatically allocated computing resources.
 Meanwhile, an initial lifetime of the instance can be specified before the serviceinstance is created. The newly created service instance will keep the user credentialsfor performing further interactions with other systems over the Internet.The newly created grid service instance will be automatically assigned a globally unique namecalled the GSH, which is used to distinguish this specific service instance from other gridservice instances

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 53

These enhancements are specified in OGSI. As the OGSI specification was finalized andimplementations began to appear, some standards organizations became interested inincorporating a portion of the functionality outlined in OGSI within appropriate Web servicesstandards; hence, over time, it is expected that much of the OGSI functionality will beincorporated in Web services standards.
2.2.6.2 Ancillary AspectsDrilling down an additional level of detail, one can further categorize grid-architectedservices into four categories, as shown in Figure 2.5:

 Grid core services
 Grid program execution services
 Grid data services
 Domain-specific services

Figure 2.5 The structure of OGSA architected services

Grid Core ServicesFigure 2.5 shows that the grid core services are composed of four main types ofservices:1. Service management2. Service communication3. Policy management4. SecurityUnlike the OGSI functions that are largely implemented as extensions to basic WebServices protocols and an interaction model, these core services are actually implemented asgrid services (upon the OGSI base). These services are considered core primarily because it isexpected that they will be broadly exploited by most higher level services implemented eitherin support of program execution or data access, or as domain-specific services.

Introduction to Grid Computing

Page 54 Under Regulation 2013 Anna University

Figure 2.5 Grid core services

 Service management.
o Service management provides functions that manage the services deployed inthe distributed grid. It automates a variety of installation, maintenance,monitoring, and troubleshooting tasks within a grid system.
o Service management includes functions

 for provisioning and deploying the system components;
 Includes functions for collecting and exchanging data about theoperation of the grid.
 This data is used for both “online” and “offline” managementoperations,
 includes information about faults, events, problem determination,auditing, metering, accounting, and billing

 Service communication.
o This includes a range of functions that support the basic methods for gridservices to communicate with each other.
o These functions support several communication models that may be composedto enable effective interservice communication, including queued messages,publish–subscribe event notification, and reliable distributed logging.
o grid services can be published to a UDDI registry, or WSIL documents

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 55

 the UDDI registry becomes a central place to store such informationabout and locations for grid services that enables publishing andsearching of trading partners’ businesses and their grid services.
 There are two types of UDDI registries: private and public.

 Application developers and/or service providers can publishthe grid services to the public UDDI registries operated by IBM,Microsoft, HP, or SAP.
 If one wants to publish one’s own private or confidential gridservices, one can use a private UDDI registry.

o As an alternative, for testing purposes or for small-scale integration, adeveloper can publish the company’s grid services to WSIL documents, sinceWSIL enables grid services discovery, deployment, and invocation without theneed for a UDDI registry.
 WSIL provides the means for aggregating references of preexistingservice description documents that have been authored in any numberof formats; these inspection documents are then made available on aWeb site.

o Figure 2.6 illustrates an example grid service deployment and publishingdiagram. The Remote Procedure Call servlet of SOAP and the realimplementation of the grid services can be deployed on an application server.All the invocation messages will be captured by the SOAP Remote ProcedureCall servlet that routes the messages to the corresponding grid service.

Figure 2.6 An example grid service deployment and publishing diagram.

 Policy services
o These create a general framework for creation, administration, andmanagement of policies and agreements for system operation.
o Policy services include policies governing security, resource allocation, andperformance, as well as an infrastructure for “policy-aware” services to usepolicies to govern their operation.

Introduction to Grid Computing

Page 56 Under Regulation 2013 Anna University

o Policy and agreement documents provide a mechanism for the representationand negotiation of terms between service providers and their clients (eitheruser requests or other services); terms include specifications, requirements,and objectives for function, performance, and quality that the suppliers andconsumers exchange and that they can then use to influence their interactions.
 Security services

o Security services support, integrate, and unify popular security models,mechanisms, protocols, and technologies in a way that enables a variety ofsystems to interoperate securely.
o These security services enable and extend core Web services security protocolsand bindings and provide service-oriented mechanisms for authentication,authorization, trust policy enforcement, credential transformation.

 Grid Program Execution Services
o Grid program execution services are depicted in Figure 2.7. Mechanisms for jobscheduling and workload management implemented as part of this class ofservices are central to grid computing and the ability to virtualizeprocessing resources.
o Although OGSI and core grid services are generally applicable to anydistributed computing system, the grid program execution service class isunique to the grid model of distributed task execution that supports high-performance computing, parallelism, and distributed collaboration.

Figure 2.7 Grid program execution services and grid data services.

 Grid Data Services
o Grid data services are also depicted in Figure 2.7. These interfaces support theconcept of data virtualization and provide mechanisms related to distributedaccess to information of many types including databases, files, documents,content stores, and application-generated streams.
o Services that comprise the grid data services class complement the computingvirtualization conventions specified by program execution services (OGSAplacing data resources on an equivalent level with computing resources).

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 57

o Grid data services will exploit and vir tualize data using placement methodslike data replication, caching, and high-performance data movement to giveapplications required QoS access across the distributed grid. Methods forfederating multiple disparate, distributed data sources may also provideintegration of data stored under differing schemas such as files and relationaldatabases.
 Domain-Specific Services

o The three categories discussed above (grid core services, grid programexecution services, and grid data services) represent areas of active work byGGF research or working groups. Over time, as these services mature, domain-specific services can also be specified.
o Domain-specific services will make use of the functionality that these servicessupply. It is critical that the GGF working groups are concentrating onspecifying a broad set of useful grid services that software vendors anddevelopers can then begin to implement.

2.2.6.3 Implementations of OGSIAs the core of the grid service architecture, OGSI needs to be hosted on a deliveryplatform that supports Web services. Vendors that offer OGSI implementations will likelydirectly use existing open source implementations provided by organizations like Globus,and/or they will integrate implementations with their hosting platform. However, gridarchitected services provide some opportunities for vendors and organizations to competeand differentiate themselves. This competition will create an “economy” of grid softwareproviders whose innovation will help drive the acceptance of standards like OGSI/OGSA, andthis will allow customers to build systems out of interoperable components. Areas offunctionality in grid program execution and data services will require innovation and novelapproaches, and these may well speed the market acceptance of grid solutions and providemarket opportunities for vendors.

Introduction to Grid Computing

Page 58 Under Regulation 2013 Anna University

Figure 2.8 Grid program execution and data services hosting.In Figure 2.8, that grid core services are likely to see a mix of open source referenceimplementations and vendor-provided “value added” implementations. OGSI/OGSA extendsWeb Services, it is not clear that software vendors will be able to differentiate themselvesbased on the quality of their core services implementations; such differention will likely bebased on the business creativity and/or import of their domain-specific implementations.For OGSA to grow in acceptance it needs to be implemented on multiple hosting platforms.
 The Globus Toolkit 3 (GT3) historically was the first full-scale implementation of theOGSI standard.
 GT3 was developed by the Globus Project, a research and development project focusedon enabling the application of grid concepts to scientific, engineering, and commercialcomputing.
 It is expected that many of the OGSI implementations will be delivered via the opensource development model and that existing reference implementations (GT3) will beused unmodified in appropriate hosting environments.
 GT3 is written in Java language using the J2EE framework; however, nothing limitsOGSI from being implemented in other programming languages and hosted in otherenvironments (the term “hosting environment” is used to denote the server in whichone or more grid service implementations run).
 Figure 2.9 shows that a Java implementation of OGSI can be hosted on any of severalJ2EE environments (such as JBOSS, WebSphere, or BEA Weblogic).
 However, alternative platforms such as a traditional C or C++ environment or C# andMicrosoft .NET are other possible hosting environments.
 Ideally, a small number of core implementations of OGSI (perhaps one per hostingplatform) will be jointly developed by the industry and used in many products

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 59

Figure 2.9 OGSI and web services hosting.

2.2.7 A More Detailed View of OGSA/OGSI
 The OGSA integrates key grid technologies including the Globus Toolkit with Webservices mechanisms to create a distributed system framework based on the OGSI.
 A grid service instance is a (potentially transient) service that conforms to a set ofconventions, expressed as WSDL interfaces, extensions, and behaviors, for suchpurposes as lifetime management, discovery of characteristics, and notification.
 OGSI introduces standard factory and registration interfaces for creating anddiscovering grid services.
 OGSI defines a component model that extends WSDL and XML schema definition toincorporate the concepts of

 Stateful Web services
 Extension of Web services interfaces
 Asynchronous notification of state change
 References to instances of services
 Collections of service instances
 Service state data that augment the constraint capabilities of XML schemadefinition

 The OGSI V1.0 specification proposes detailed specifications for the conventions thatgovern how clients create, discover, and interact with a grid service instance. That is, itspecifies(1) How grid service instances are named and referenced;(2) The base, common interfaces (and associated behaviors) that all grid servicesimplement;(3) The additional (optional) interfaces and behaviors associated with factories andservice groups.

Introduction to Grid Computing

Page 60 Under Regulation 2013 Anna University

2.2.7.1 Setting the ContextGGF calls OGSI the “base for OGSA.” Specifically, there is a relationship between OGSIand distributed object systems and also a relationship between OGSI and the existing (andevolving) Web services framework. One needs to examine both the client-side programmingpatterns for grid services and a conceptual hosting environment for grid services. The patternsdescribed in this section are enabled but not required by OGSI.
2.2.7.1.1 Relationship to Distributed Object Systems
 A given grid service implementation is an addressable and potentially stateful

instance that implements one or more interfaces described by WSDL portTypes.
 Grid service factories used to create instances implementing a given set ofportType(s).
 Each grid service instance has a notion of identity with respect to the otherinstances in the distributed grid.
 Each instance can be characterized as state coupled with behavior publishedthrough type-specific operations.
 The architecture also supports introspection in that a client application can ask agrid service instance to return information describing itself, such as the collectionof portTypes that it implements.

 Grid service instances are made accessible to (potentially remote) client applicationsthrough the use of a grid service handle and a grid service reference (GSR).
 These constructs are basically network-wide pointers to specific grid serviceinstances hosted in (potentially remote) execution environments.
 A client application can use a grid service reference to send requests, representedby the operations defined in the portType(s) of the target service descriptiondirectly to the specific instance at the specified network-attached service endpointidentified by the grid service reference.

 Client stubs and helper classes isolate application programmers from the details ofusing grid service references. Some client-side infrastructure software assumesresponsibility for directing an operation to a specific instance that the GSR identifies.
 OGSI does not adopt the term distributed object model or distributed object systemwhen describing stateful instances, typed interfaces, global names, etc concepts, butinstead uses the term “open grid services infrastructure,” thus emphasizing theconnections that are established with both Web services and grid technologies.

2.2.7.1.2 Client-Side Programming PatternsAnother important issue is how OGSI interfaces are likely to be invoked from clientapplications. OGSI exploits an important component of the Web services framework:
 The use of WSDL to describe multiple protocol bindings, encoding styles, messagingstyles (RPC versus document oriented), and so on, for a given Web service.
 The Web Services Invocation Framework (WSIF) and Java API for XML RPC (JAX-RPC)are among the many examples of infrastructure software that provide this capability.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 61

Client-side architecture for OGSI

Figure 2.10 Possible client-side runtime architectureFigure 2.10 depicts possible (but not required) client-side architecture for OGSI.
 In this approach, a clear separation exists between the client application and the client-side representation of the Web service (proxy), including components for marshalingthe invocation of a Web service over a chosen binding.
 The client application is insulated from the details of the Web service invocation by a

higher-level abstraction: the client-side interface.
 This interface is a front end to specific parameter marshaling and message routing thatcan incorporate various binding options provided by the WSDL. Further, this approachallows certain efficiencies, for example, detecting that the client and the Web serviceexist on the same network host, therefore avoiding the overhead of preparing for andexecuting the invocation using network protocols.
 Client application runtime, a proxy provides a client-side representation of remoteservice instance’s interface. Proxy behaviors specific to a particular encoding andnetwork protocol (binding, in Web services terminology) are encapsulated in aprotocol-specific (binding-specific) stub

Disadvantages
 Not recommended, for developers to build customized code that directly couples clientapplications to fixed bindings of a particular grid service instance
 This approach introduces significant inflexibility into a system

Stub and client-side infrastructure modelThis includes both application-specific services and common infrastructure servicesthat are defined by OGSA. Thus, for most software developers using grid services, theinfrastructure and application-level services appear in the form of a class library orprogramming language interface that is natural to the caller. WSDL and the GWSDL extensionsprovide support for enabling heterogeneous tools and enabling infrastructure software.

Introduction to Grid Computing

Page 62 Under Regulation 2013 Anna University

2.2.7.1.3 Client Use of Grid Service Handles and References
 A grid service handle (GSH) can be thought of as a permanent network pointer to aparticular grid service instance. The GSH does not provide sufficient information toallow a client to access the service instance; the client needs to “resolve” a GSH into agrid service reference (GSR).
 The GSR contains all the necessary information to access the service instance.
 The GSR is not a “permanent” network pointer to the grid service instance because aGSR may become invalid for various reasons; for example, the grid service instancemay be moved to a different server.
 OGSI provides a mechanism, the Handle Resolver to support client resolution of a gridservice handle into a grid service reference. Figure 2.11 shows a client application thatneeds to resolve a GSH into a GSR.

Figure 2.11 Resolving a GSH

HandleResolverThe client resolves a GSH into a GSR by invoking a HandleResolver grid serviceinstance identified by some out-of-band mechanism.
 The HandleResolver can use various means to do the resolution.
 The HandleResolver may have the GSR stored in a local cache.
 The HandleResolver may need to invoke another HandleResolver to resolve the GSH.
 The HandleResolver may use a handle resolution protocol, specified by the particularkind (or scheme) of the GSH to resolve to a GSR.
 The HandleResolver protocol is specific to the kind of GSH being resolved.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 63

2.2.7.1.4 Relationship to Hosting EnvironmentOGSI does not dictate a particular service-provider-side implementation architecture.A variety of approaches are possible, ranging from implementing the grid service instance
directly as an operating system process to a sophisticated server-side component modelsuch as J2EE. In the former case, most or even all support for standard grid service behaviors(invocation, lifetime management, registration, etc.) is encapsulated within the user process;for example, via linking with a standard library. In the latter case, many of these behaviors aresupported by the hosting environment.
Demarshaling functionsFigure 2.12 illustrates these differences by showing two different approaches to theimplementation of argument demarshaling functions.

 The invocation message is received at a network protocol termination point (e.g., anHTTP servlet engine) that converts the data in the invocation message into a formatconsumable by the hosting environment.
 The top part of Figure 2.12 illustrates two grid service instances (the oval) associatedwith container-managed components (e.g., EJBs within a J2EE container).
 Here, the message is dispatched to these components, with the container frequentlyproviding facilities for demarshaling and decoding the incoming message from aformat (such as an XML/SOAP message) into an invocation of the component in nativeprogramming language. In some circumstances (the oval), the entire behavior of a gridservice instance is completely encapsulated within the component.

Figure 2.12 Two approaches to the implementation of argument demarshaling
functions in a grid service hosting environment

Demarshaling/ decodingIn other cases (the oval), a component will collaborate with other server-sideexecutables, perhaps through an adapter layer, to complete the implementation of the gridservice behavior. The bottom part of Figure 2.12 depicts another scenario wherein the entire

Introduction to Grid Computing

Page 64 Under Regulation 2013 Anna University

behavior of the grid service instance, including the demarshaling/ decoding of the networkmessage, has been encapsulated within a single executable. Although this approach may havesome efficiency advantages, it provides little opportunity for reuse of functionality betweengrid service implementations.A container implementation may provide a range of functionality beyond simple
argument demarshaling. For example, the container implementation may provide lifetimemanagement functions, automatic support for authorization and authentication, requestlogging, intercepting lifetime management functions, and terminating service instances when aservice lifetime expires or an explicit destruction request is received. Thus, one avoids theneed to reimplement these common behaviors in different grid service implementations.
2.2.7.3 The Grid ServiceThe purpose of the OGSI document is to specify the (standardized) interfaces andbehaviors that define a grid service. In brief, a grid service is a WSDL-defined service thatconforms to a set of conventions relating to its interface definitions and behaviors.Thus, every grid service is a Web service, though the converse of this statement is nottrue. The OGSI document expands upon this brief statement by

 Introducing a set of WSDL conventions that one uses in the grid service specification;these conventions have been incorporated in WSDL 1.2.
 Defining service data that provide a standard way for representing and queryingmetadata and state data from a service instance
 Introducing a series of core properties of grid service, including:

o Defining grid service description and grid service instance, as organizing principlesfor their extension and their use.
o Defining how OGSI models time.
o Defining the grid service handle and grid service reference constructs that are usedto refer to grid service instances.
o Defining a common approach for conveying fault information from operations. Thisapproach defines a base XML schema definition and associated semantics forWSDL fault messages to support a common interpretation; the approach simplydefines the base format for fault messages, without modifying the WSDL faultmessage model.
o Defining the life cycle of a grid service instance

2.2.7.4 WSDL Extensions and Conventions
 OGSI is based on Web services; in particular, it uses WSDL as the mechanism todescribe the public interfaces of grid services.
 WSDL 1.1 is deficient in two critical areas: lack of interface (portType) extension

and the inability to describe additional information elements on a portType (lack ofopen content).
 These deficiencies have been addressed by the W3C Web Services DescriptionWorking Group . Because WSDL 1.2 is a “work in progress,” OGSI cannot directlyincorporate the entire WSDL 1.2 body of work.
 Instead, OGSI defines an extension to WSDL 1.1, isolated to the wsdl:portType element,

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 65

which provides the minimal required extensions to WSDL 1.1.
 These extensions to WSDL 1.1 match equivalent functionality agreed to by the W3CWeb Services Description Working Group.
 Once WSDL 1.2 [150] is published as a recommendation by the W3C, the Global GridForum is committed to defining a follow- on version of OGSI that exploits WSDL 1.2,and to defining a translation from this OGSI v1.0 extension to WSDL 1.2.

2.2.8 Service DataThe approach to stateful Web services introduced in OGSI identified the need for acommon mechanism to expose a service instance’s state data to service requestors for query,update, and change notification. Since this concept is applicable to any Web service includingthose used outside the context of grid applications, one can propose a common approach toexposing Web service state data called “serviceData.”In order to provide a complete description of the interface of a stateful Web service(i.e., a grid service), it is necessary to describe the elements of its state that are externallyobservable. Service data can be exposed for read, update, or subscription purposes. SinceWSDL defines operations and messages for portTypes, the declared state of a service must beexternally accessed only through service operations defined as part of the service interface.
Service Data declaration is the mechanism used to express the elements of thepublicly available state exposed by the service’s interface. ServiceData elements are accessiblethrough operations of the service interfaces such as those defined in this specification. Theprivate internal state of the service instance is not part of the service interface and is thereforenot represented through a serviceData declaration.

2.2.8.1 Motivation and Comparison to JavaBean Properties
 The OGSI specification introduces the serviceData concept to provide a flexible,properties style approach to accessing state data of a Web service.
 The serviceData concept is similar to the notion of a public instance variable or field inobject-oriented programming languages such as Java, Smalltalk, and C++. ServiceDatais similar to JavaBean properties.

o The JavaBean model defines conventions for method signatures(getXXX/setXXX) to access properties, and helper classes (BeanInfo) todocument properties.
 OGSI defines extensible operations for querying (get), updating (set), and subscribingto notification of changes in serviceData elements.
 The serviceDataName element in a GridService portType definition corresponds to theBeanInfo class in JavaBeans. However, OGSI has chosen an XML (WSDL) document thatprovides information about the serviceData, instead of using a serializableimplementation class as in the BeanInfo model.

2.2.8.2 Extending portType with serviceData
 ServiceData defines a new portType child element named serviceData, used to defineserviceData elements, or SDEs, associated with that portType.
 These serviceData element definitions are referred to as serviceData declarations, or

Introduction to Grid Computing

Page 66 Under Regulation 2013 Anna University

SDDs. Initial values for those serviceData elements (marked as “static” serviceDataelements) may be specified using the static ServiceData Values element withinportType.
 The values of any serviceData element, whether declared statically in the portType orassigned during the life of the
 Web service instance, are called serviceData element values, or SDE values.

2.2.8.3 ServiceDataValues
 Each service instance is associated with a collection of serviceData elements: thoseserviceData elements defined within the various portTypes that form the service’sinterface, and also, potentially, additional service-Data elements added at runtime.
 OGSI calls the set of serviceData elements associated with a service instance its

“serviceData set.” A serviceData set may also refer to the set of serviceData elementsaggregated from all serviceData elements declared in a portType interface hierarchy.
 Each service instance must have a “logical” XML document, with a root element ofserviceDataValues that contains the serviceData element values.
 A service implementation is free to choose how the SDE values are stored.

2.2.8.4 SDE Aggregation within a portType Interface Hierarchy
 WSDL 1.2 has introduced the notion of multiple portType extension, and one canmodel that construct within the GWSDL namespace.
 A portType can extend zero or more other portTypes.
 There is no direct relationship between a wsdl:service and the portTypes supported bythe service modeled in the WSDL syntax.
 The set of portTypes implemented by the service is derived through the port elementchildren of the service element and binding elements referred to from those portelements.
 The serviceData set defined by the service’s interface is the set union of theserviceData elements declared in each portType in the complete interfaceimplemented by the service instance.

2.2.8.5 Dynamic serviceData ElementsThe grid service portType illustrates the use of dynamic SDEs. This contains aserviceData element named “serviceDataName” that lists the serviceData elements currentlydefined. This property of a service instance may return a superset of the serviceData elementsdeclared in the GWSDL defining the service interface, allowing the requestor to use thesubscribe operation if this serviceDataSet changes, and the findServiceData operation todetermine the current serviceDataSet value.
2.2.9 Core Grid Service PropertiesThis subsection discusses a number of properties and concepts common to all gridservices.
2.2.9.1 Service Description and Service Instance

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 67

One can distinguish in OGSI between the description of a grid service and an instanceof a grid service:
 A grid service description describes how a client interacts with service instances.This description is independent of any particular instance. Within a WSDL document,the grid service description is embodied in the most derived portType (i.e., theportType referenced by the wsdl:service element’s port children, via referencedbinding elements, describing the service) of the instance, along with its associatedportTypes (including serviceData declarations), bindings, messages, and typesdefinitions.
 A grid service description may be simultaneously used by any number of grid service

instances, each of which
o Embodies some state with which the service description describes how tointeract
o Has one or more grid service handles
o Has one or more grid service references to it

2.2.9.2 Modeling Time in OGSIThe need arises at various points throughout this specification to represent time that ismeaningful to multiple parties in the distributed Grid. For example, information may be taggedby a producer with timestamps in order to convey that information’s useful lifetime toconsumers. Clients need to negotiate service instance lifetimes with services, and multipleservices may need a common understanding of time in order for clients to be able to managetheir simultaneous use and interaction.The GMT global time standard is assumed for grid services, allowing operations torefer unambiguously to absolute times. However, assuming the GMT time standard torepresent time does not imply any particular level of clock synchronization between clientsand services in the grid. In fact, no specific accuracy of synchronizationis specified or expected by OGSI, as this is a service-quality issue.
o Network Time Protocol (NTP) or equivalent function to synchronize their clocks to theglobal standard GMT time.
o clients and services requiring global ordering or synchronization at a finer granularitythan their clock accuracies or resolutions allow for must coordinate through the use ofadditional synchronization service interfaces, such as through transactions orsynthesized global clocks.In some cases, it is required to represent both zero time and infinite time. Zero timeshould be represented by a time in the past. However, infinite time requires an extendednotion of time. One therefore introduces the following type in the OGSI namespace that may beused in place of xsd:dateTime when a special value of “infinity” is appropriate.

2.2.9.3 XML Element Lifetime Declaration PropertiesOne can define three XML attributes that together describe the lifetimes associatedwith an XML element and its subelements. These attributes may be used in any XML elementthat allows for extensibility attributes, including the serviceData element.The three lifetime declaration properties are:

Introduction to Grid Computing

Page 68 Under Regulation 2013 Anna University

1. ogsi:goodFrom. Declares the time from which the content of the element is said to bevalid. This is typically the time at which the value was created.2. ogsi:goodUntil. Declares the time until which the content of the element is said to be valid.This property must be greater than or equal to the goodFrom time.3. ogsi:availableUntil. Declares the time until which this element itself is expected to beavailable, perhaps with updated values. Prior to this time, a client should be able to obtainan updated copy of this element. After this time, a client may no longer be able to get acopy of this element (while still observing cardinality and mutability constraints on thiselement). This property must be greater than or equal to the goodFrom time.
2.3 Data-Intensive Grid Service ModelsApplications in the grid are normally grouped into two categories:

 computation-intensive
 dataintensive

o For data-intensive applications have to deal with massive amounts of data.
o The grid system must be specially designed to discover, transfer, and manipulatethese massive data sets. Transferring massive data sets is a time-consuming task.
o Efficient data management demands low-cost storage and high-speed datamovement.Listed in the following paragraphs are several common methods for solving datamovement problems.

2.3.1 Data Replication and Unified NamespaceThis data access method is also known as caching,
 This is often applied to enhance data efficiency in a grid environment.
 By replicating the same data blocks and scattering them in multiple regions of a grid,users can access the same data with locality of references.
 Furthermore, the replicas of the same data set can be a backup for one another.
 Some key data will not be lost in case of failures. However, data replication maydemand periodic consistency checks.
 The increase in storage requirements and network bandwidth may cause additionalproblems.

Replication strategies determine when and where to create a replica of the data.
 The factors to consider include data demand, network conditions, and transfer cost.
 The strategies of replication can be classified into method types:
 Dynamic strategies

o Can adjust locations and number of data replicas according to changes inconditions (e.g., user behavior).
o Frequent data-moving operations can result in much more overhead than instatic strategies.
o The replication strategy must be optimized with respect to the status of datareplicas.
o optimization may be determined based on whether the data replica is being

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 69

created, deleted, or moved
 Static method

o The locations and number of replicas are determined in advance and will notbe modified.
o Replication operations require little overhead, static strategies cannot adaptto changes in demand, bandwidth, and storage viability.
o Optimization is required to determine the location and number of datareplicas.The most common replication strategies include preserving locality, minimizingupdate costs, and maximizing profits.

2.3.2 Grid Data Access Models
 Multiple participants may want to share the same data collection.
 To retrieve any piece of data, we need a grid with a unique global namespace.
 Similarly, we desire to have unique file names.

 To achieve these, we have to resolve inconsistencies among multiple data objectsbearing the same name. Access restrictions may be imposed to avoid confusion.
 Data needs to be protected to avoid leakage and damage.
 Users who want to access data have to be authenticated first and then authorized

for access.In general, there are four access models for organizing a data grid, as listed here andshown in Figure 2.3.

Figure 2.3 Four architectural models for building a data grid

Monadic model: This is a centralized data repository model, shown in Figure 2.3(a).
 All the data is saved in a central data repository.

Introduction to Grid Computing

Page 70 Under Regulation 2013 Anna University

 When users want to access some data they have to submit requests directly to thecentral repository.
 No data is replicated for preserving data locality.
 This model is the simplest to implement for a small grid.
 For a large grid, this model is not efficient in terms of performance and reliability.
 Data replication is permitted in this model only when fault tolerance is demanded.

Hierarchical model: The hierarchical model, shown in Figure 2.3(b), is suitable for building alarge data grid which has only one large data access directory.
 The data may be transferred from the source to a second-level center.
 Then some data in the regional center is transferred to the third level center.
 After being forwarded several times, specific data objects are accessed directly byusers.
 Generally speaking, a higher-level data center has a wider coverage area.
 It provides higher bandwidth for access than a lower-level data center.
 PKI security services are easier to implement in this hierarchical data access model.
 The European Data Grid (EDG) adopts this data access model.

Federation model or mesh model: This data access model shown in Figure 2.3(c) is bettersuited for designing a data grid with multiple sources of data supplies.
 The data sources are distributed to many different locations.
 Although the data is shared, the data items are still owned and controlled by theiroriginal owners. According to predefined access policies, only authenticated users areauthorized to request data from any data source.
 This mesh model may cost the most when the number of grid institutions becomesvery large.

Hybrid model: This data access model is shown in Figure 2.3(d).
 The model combines the best features of the hierarchical and mesh models.
 Traditional data transfer technology, such as FTP, applies for networks with lowerbandwidth.
 Network links in a data grid often have fairly high bandwidth, and other data transfermodels are exploited by high-speed data transfer tools such as GridFTP developedwith the Globus library.
 The cost of the hybrid model can be traded off between the two extreme models forhierarchical and mesh-connected grids.

2.3.4 Parallel versus Striped Data Transfers
Parallel Data transfer

 Parallel data transfer opens multiple data streams for passing subdivided segments ofa file simultaneously.
 The speed of each stream is the same as in sequential streaming, the total time to movedata in all streams can be significantly reduced compared to FTP transfer.

Striped data transfer

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 71

 Data object is partitioned into a number of sections, and each section is placed in anindividual site in a data grid.
 When a user requests this piece of data, a data stream is created for each site, and allthe sections of data objects are transferred simultaneously.
 Striped data transfer can utilize the bandwidths of multiple sites more efficiently tospeed up data transfer.

2.5 Grid Services and OGSA servicesThe OGSA is a service-oriented architecture that aims to define a common, standard,and open architecture for grid-based applications. “Open” refers to both the process to developstandards and the standards themselves. In OGSA, everything from registries, tocomputational tasks, to data resources is considered a service. These extensible set of servicesare the building blocks of an OGSA-based grid.OGSA is intended to:
 Facilitate use and management of resources across distributed, heterogeneousenvironments
 Deliver seamless QoS
 Define open, published interfaces in order to provide interoperability of diverseresources
 Exploit industry-standard integration technologies
 Develop standards that achieve interoperability
 Integrate, virtualize, and manage services and resources in a distributed,heterogeneous Environment
 Deliver functionality as loosely coupled, interacting services aligned with industry-accepted web service standardsBased on OGSA, a grid is built from a small number of standards-based components, called

grid services.
 Defines a grid service as “a web service that provides a set of well-defined interfaces,following specific conventions (expressed using WSDL).”OGSA gives a high-level architectural view of grid services and doesn’t go into muchdetail when describing grid services. It basically outlines what a grid service should have.
 A grid service implements one or more interfaces, where each interface defines a set ofoperations that are invoked by exchanging a defined sequence of messages, based onthe Open Grid Services Infrastructure (OGSI).OGSI, also developed by the Global Grid Forum, gives a formal and technicalspecification of a grid service.Grid service interfaces correspond to portTypes in WSDL.
 The set of portTypes supported by a grid service, along with some additionalinformation relating to versioning, are specified in the grid service’s serviceType, aWSDL extensibility element defined by OGSA.
 The interfaces address discovery, dynamic service creation, lifetime management,notification, and manageability; whereas the conventions address naming and

Introduction to Grid Computing

Page 72 Under Regulation 2013 Anna University

upgradeability.
 Grid service implementations can target native platform facilities for integration with,and of, existing IT infrastructures.OGSA services fall into seven broad areas, defined in terms of capabilities frequentlyrequired in a grid scenario. Figure 2.4 shows the OGSA architecture.These services are summarized as follows:
 Infrastructure Services Refer to a set of common functionalities, such as naming,typically required by higher level services.
 Execution Management Services Concerned with issues such as starting andmanaging tasks, including placement, provisioning, and life-cycle management. Tasksmay range from simple jobs to complex workflows or composite services.
 Data Management Services Provide functionality to move data to where it is needed,maintain replicated copies, run queries and updates, and transform data into newformats. These services must handle issues such as data consistency, persistency, andintegrity. An OGSA data service is a web service that implements one or more of thebase data interfaces to enable access to, and management of, data resources in adistributed environment. The three base interfaces, Data Access, Data Factory, andData Management, define basic operations for representing, accessing, creating, andmanaging data.
 Resource Management Services Provide management capabilities for grid resources:management of the resources themselves, management of the resources as gridcomponents, and management of the OGSA infrastructure. For example, resources canbe monitored, reserved, deployed, and configured as needed to meet application QoSrequirements. It also requires an information model (semantics) and data model(representation) of the grid resources and services.
 Security Services Facilitate the enforcement of security-related policies within a(virtual) organization, and supports safe resource sharing. Authentication,authorization, and integrity assurance are essential functionalities provided by theseservices.
 Information Services Provide efficient production of, and access to, informationabout the grid and its constituent resources. The term “information” refers to dynamicdata or events used for status monitoring; relatively static data used for discovery; andany data that is logged. Troubleshooting is just one of the possible uses for informationprovided by these services.
 Self-Management Services Support service-level attainment for a set of services (orresources), with as much automation as possible, to reduce the costs and complexity ofmanaging the system.These services are essential in addressing the increasing complexity of owning andoperating an IT infrastructure.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 73

Figure 2.4 The OGSA architectureOGSA has been adopted as reference grid architecture by a number of grid projects.The first prototype grid service implementation was demonstrated January 29, 2002, at aGlobus Toolkit tutorial held at Argonne National Laboratory. Since then, the Globus Toolkit 3.0and 3.2 have offered an OGSA implementation based on OGSI. Two key properties of a gridservice are transience and statefulness. Creation and destruction of a transient grid service canbe done dynamically. The creation and lifetime of OGSA grid services are handled following the“factory pattern,” . Web service technologies are designed to support loosely coupled, coarsegrained dynamic systems, and hence do not meet all grid requirements, such as keeping stateinformation, and thus they are unable to fully address the wide range of distributed systemsOGSA is designed to support.OGSA applies a set of WSDL extensions to represent the identifiers necessary toimplement a grid service instance across any system. These extensions were defined by OGSI.A key extension is the grid service reference: a network-wide pointer to a specific grid serviceinstance, which makes that instance accessible to remote client applications. These extensions,including the Grid Service Handle (GSH) and Grid Service Reference (GSR. These extensionsinclude stateful grid services and the shortcomings of OGSI with its dense and longspecifications. Further problems concern incompatibility with some current web service toolsand the fact that it takes a lot of concepts from object orientation.Unlike the nature of web services, this has led to close cooperation between the gridand web service communities. As a result of these joint efforts, the Web Services ResourceFramework (WSRF) , WS-Addressing , and WS-Notification (WSN) specifications have beenproposed to OASIS. Consequently, OGSI extensions to web services have been deprecated infavor of new web service standards, and in particular, WSRF. WSRF is a collection of fivedifferent specifications. Of course, they all relate to the management of WS-Resources.

Introduction to Grid Computing

Page 74 Under Regulation 2013 Anna University

Plain web services are usually stateless. This means the web service can’t “remember”information, or keep state, from one invocation to another. However, since a web service isstateless, the following invocations have no idea of what was done in the previous invocations.Grid applications generally require web services to keep state information as they interactwith the clients or other web services. The purpose of WSRF is to define a generic frameworkfor modeling and accessing persistent resources using web services in order to facilitate thedefinition and implementation of a service and the integration and management of multipleservices. Note that “stateless” services can, in fact, remember state if that is carried inmessages they receive. These could contain a token remembered in a cookie on the client sideand a database or cache accessed by the service. Again, the user accessing a stateless servicecan establish state for the session through the user login that references permanentinformation stored in a database.The state information of a web service is kept in a separate entity called a resource. Aservice may have more than one (singleton) resource, distinguished by assigning a unique keyto each resource. Resources can be either in memory or persistent, stored in secondarystorage such as a file or database. The pairing of a web service with a resource is called a WS-Resource. The preferred way of addressing a specific WS-Resource is to use the qualifiedendpoint reference (EPR) construct, proposed by the WS-Addressing specification. Resourcesstore actual data items, referred to as resource properties. Resource properties are usuallyused to keep service data values, providing information on the current state of the service, ormetadata about such values, or they may contain information required to manage the state,such as the time when the resource must be destroyed. Currently, the Globus Toolkit 4.0provides a set of OGSA capabilities based on WSRF.
3.1 Cloud Computing and Service ModelsOver the past two decades, the world economy has rapidly moved from manufacturingto more service-oriented. Developers of innovative cloud applications no longer acquire largecapital equipment in advance. They just rent the resources from some large data centers thathave been automated for this purpose. We will study the cloud platform architecture, servicemodels, and programming environments. Users can access and deploy cloud applications fromanywhere in the world at very competitive costs. Virtualized cloud platforms are often built ontop of large data centers. Clouds aim to power the next generation of data centers byarchitecting them as virtual resources over automated hardware, databases, user interfaces,and application environments. In this sense, clouds grow out of the desire to build better datacenters through automated resource provisioning.
3.1.1 Centralized versus Distributed ComputingSome people argue that cloud computing is centralized computing at data centers.Others claim that cloud computing is the practice of distributed parallel computing over data-center resources. These represent two opposite views of cloud computing. All computations incloud applications are distributed to servers in a data center. These are mainly virtualmachines (VMs) in virtual clusters created out of data-center resources. In this sense, cloudplatforms are systems distributed through virtualization.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 75

Figure 3.1 Public, private, and hybrid clouds illustrated by functional architecture and
connectivity of representative clouds available by 2011.As Figure 3.1 shows, both public clouds and private clouds are developed in theInternet. As many clouds are generated by commercial providers or by enterprises in adistributed manner, they will be interconnected over the Internet to achieve scalable andefficient computing services. Commercial cloud providers such as Amazon, Google, andMicrosoft created their platforms to be distributed geographically.This distribution is partially attributed to fault tolerance, response latency reduction,and even legal reasons. Intranet-based private clouds are linked to public clouds to getadditional resources. Nevertheless, users in Europe may not feel comfortable using clouds inthe United States, and vice versa, until extensive service-level agreements (SLAs) aredeveloped between the two user communities.
3.1.2 Cloud deployment models: Public, Private, and Hybrid CloudsThe concept of cloud computing has evolved from cluster, grid, and utility computing.Cluster and grid computing leverage the use of many computers in parallel to solve problemsof any size. Utility and Software as a Service (SaaS) provide computing resources as a servicewith the notion of pay per use.Cloud Computing

 Leverages dynamic resources to deliver large numbers of services to end users.
 Is a high-throughput computing (HTC) paradigm where the infrastructure provides theservices through a large data center or server farms.
 Model enables users to share access to resources from anywhere at any time throughtheir connected devices.
 Avoids large data movement, resulting in much better network bandwidth utilization.
 Machine virtualization has enhanced resource utilization, increased applicationflexibility, and reduced the total cost of using virtualized data-center resources.
 Offers significant benefit to IT companies by freeing them from the low-level task ofsetting up the hardware (servers) and managing the system software.

Introduction to Grid Computing

Page 76 Under Regulation 2013 Anna University

 Applies a virtual platform with elastic resources put together by on-demandprovisioning of hardware, software, and data sets, dynamically.
 Main idea is to move desktop computing to a service-oriented platform using serverclusters and huge databases at data centers.
 Cloud computing leverages its low cost and simplicity to both providers and users.
 Intends to leverage multitasking to achieve higher throughput by serving manyheterogeneous applications, large or small, simultaneously.

3.1.2.1 Public Clouds or External Clouds
 A public cloud is built over the Internet and can be accessed by any user who has paidfor the service.
 Public clouds are owned by service providers and are accessible through asubscription.
 A public cloud is hosted, operated, and managed by a third-party vendor from one ormore data centers.
 Third-party provider who shares resources and bills on a fine-grained, utility-computing basis.
 Service is offered to multiple customers over a common infrastructure; see Figure 3.2.
 The application and infrastructure services are offered on a flexible price-per-use basis

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 77

Security Management in public cloud:
 In a public cloud, security management and day-to-day operations are relegated to thethird party vendor, who is responsible for the public cloud service offering.
 The customer of the public cloud service offering has a low degree of control andfailure to notice of the physical and logical security aspects of a private cloud.

Examples
 Google App Engine (GAE), Amazon Web Services (AWS), Microsoft Azure, IBM BlueCloud, and Salesforce.com’s Force.com

Figure 3.2 public cloud

3.1.2.2 Private Cloud or Internal Cloud
 A private cloud is built within the domain of an intranet owned by a singleorganization. Therefore, it is client owned and managed, and its access is limited to theowning clients and their partners.
 Its deployment was not meant to sell capacity over the Internet through publiclyaccessible interfaces.
 Private clouds give local users a flexible and agile private infrastructure to run serviceworkloadswithin their administrative domains.
 A private cloud is supposed to deliver more efficient and convenient cloud services. Itmay impact the cloud standardization, while retaining greater customization andorganizational control.
 The organizational customer for a private cloud is responsible for the operation of hisprivate cloud.
 Private clouds is dedicated to a single organization and is not shared with any otherorganizations (i.e., the cloud is dedicated to a single organizational tenant).
 Types of private cloud patterns

o Dedicated: Private clouds hosted within a customer-owned data center or at acollocation facility, and operated by internal IT departments.

Introduction to Grid Computing

Page 78 Under Regulation 2013 Anna University

o Community: Private clouds located at the premises of a third party; owned,managed, and operated by a vendor who is bound by custom SLAs andcontractual clauses with security and compliance requirements.
o Managed: Private cloud infrastructure owned by a customer and managed by avendor

Security Management in public cloud
 In a private cloud operating model, the security management and day-to-dayoperation of hosts are relegated to internal IT or to a third party with contractualSLAs.
 In this model, a customer of a private cloud should have a high degree of controland oversight of the physical and logical security aspects of the private cloudinfrastructure
 With that high degree of control and transparency, it is easier for a customer tocomply with established corporate security standards, policies, and regulatorycompliance.

3.1.2.3 Hybrid Cloud
 A hybrid cloud environment consisting of multiple internal and/or external providersis a possible deployment for organizations.
 Private clouds can also support a hybrid cloud model by supplementing localinfrastructure with computing capacity from an external public cloud.

 For example, the Research Compute Cloud (RC2) is a private cloud, built by IBM,that interconnects the computing and IT resources at eight IBM Research Centersscattered throughout the United States, Europe, and Asia.
 With a hybrid cloud, organizations might run non-core applications in a public cloud,while maintaining core applications and sensitive data in-house in a private cloud (seeFigure 3.3).
 A hybrid cloud provides access to clients, the partner network, and third parties.

Security Management in hybrid cloud
 Public clouds promote standardization, preserve capital investment, and offerapplication flexibility. Private clouds attempt to achieve customization and offer higherefficiency, resiliency, security, and privacy. Hybrid clouds operate in the middle, withmany compromises in terms of resource sharing.
 A major concern is to trust that a company’s or an individual’s information is bothsecure and private. Establishing this trust is a major milestone in the adoption of thefull range of cloud computing.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 79

Figure 3.3 Hybrid Cloud

3.1.3 Cloud Design ObjectivesDespite the controversy surrounding the replacement of desktop or desk sidecomputing by centralized computing and storage services at data centers or big IT companies,the cloud computing community has reached some consensus on what has to be done to makecloud computing universally acceptable.The following list highlights six design objectives for cloud computing:
 Shifting computing from desktops to data centers Computer processing, storage,and software delivery is shifted away from desktops and local servers and toward datacenters over the Internet.
 Service provisioning and cloud economics Providers supply cloud services bysigning SLAs with consumers and end users. The services must be efficient in terms ofcomputing, storage, and power consumption. Pricing is based on a pay-as-you-gopolicy.
 Scalability in performance The cloud platforms and software and infrastructureservices must be able to scale in performance as the number of users increases.
 Data privacy protection Can you trust data centers to handle your private data andrecords?This concern must be addressed to make clouds successful as trusted services.
 High quality of cloud services The QoS of cloud computing must be standardized tomakeclouds interoperable among multiple providers.
 New standards and interfaces This refers to solving the data lock-in problemassociated with data centers or cloud providers. Universally accepted APIs and accessprotocols are needed to provide high portability and flexibility of virtualizedapplications.

Introduction to Grid Computing

Page 80 Under Regulation 2013 Anna University

3.2 Categories of cloud computing: Everything as a service: Infrastructure, platform,
softwareCloud computing delivers infrastructure, platform, and software (application) asservices, which are made available as subscription-based services in a pay-as-you-go model toconsumers. The services provided over the cloud can be generally categorized into threedifferent service models given in figure 3.4:

 Infrastructure as a Service (IaaS)
 Platform as a Service (PaaS)
 Software as a Service (SaaS)

Figure 3.4 Categories of cloud computingAll three models allow users to access services over the Internet, relying entirely onthe infrastructures of cloud service providers. These models are offered based on various SLAsbetween providers and users. In a broad sense, the SLA for cloud computing is addressed interms of service availability, performance, and data protection and security.Figure 3.5 illustrates three cloud models at different service levels of the cloud.
 SaaS is applied at the application end using special interfaces by users or clients.
 At the PaaS layer, the cloud platform must perform billing services and handle jobqueuing, launching, and monitoring services.
 At the bottom layer of the IaaS services, databases, compute instances, the file system,and storage must be provisioned to satisfy user demands.

Introduction to Grid Computing

Page 80 Under Regulation 2013 Anna University

3.2 Categories of cloud computing: Everything as a service: Infrastructure, platform,
softwareCloud computing delivers infrastructure, platform, and software (application) asservices, which are made available as subscription-based services in a pay-as-you-go model toconsumers. The services provided over the cloud can be generally categorized into threedifferent service models given in figure 3.4:

 Infrastructure as a Service (IaaS)
 Platform as a Service (PaaS)
 Software as a Service (SaaS)

Figure 3.4 Categories of cloud computingAll three models allow users to access services over the Internet, relying entirely onthe infrastructures of cloud service providers. These models are offered based on various SLAsbetween providers and users. In a broad sense, the SLA for cloud computing is addressed interms of service availability, performance, and data protection and security.Figure 3.5 illustrates three cloud models at different service levels of the cloud.
 SaaS is applied at the application end using special interfaces by users or clients.
 At the PaaS layer, the cloud platform must perform billing services and handle jobqueuing, launching, and monitoring services.
 At the bottom layer of the IaaS services, databases, compute instances, the file system,and storage must be provisioned to satisfy user demands.

Introduction to Grid Computing

Page 80 Under Regulation 2013 Anna University

3.2 Categories of cloud computing: Everything as a service: Infrastructure, platform,
softwareCloud computing delivers infrastructure, platform, and software (application) asservices, which are made available as subscription-based services in a pay-as-you-go model toconsumers. The services provided over the cloud can be generally categorized into threedifferent service models given in figure 3.4:

 Infrastructure as a Service (IaaS)
 Platform as a Service (PaaS)
 Software as a Service (SaaS)

Figure 3.4 Categories of cloud computingAll three models allow users to access services over the Internet, relying entirely onthe infrastructures of cloud service providers. These models are offered based on various SLAsbetween providers and users. In a broad sense, the SLA for cloud computing is addressed interms of service availability, performance, and data protection and security.Figure 3.5 illustrates three cloud models at different service levels of the cloud.
 SaaS is applied at the application end using special interfaces by users or clients.
 At the PaaS layer, the cloud platform must perform billing services and handle jobqueuing, launching, and monitoring services.
 At the bottom layer of the IaaS services, databases, compute instances, the file system,and storage must be provisioned to satisfy user demands.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 81

Figure 3.5 The IaaS, PaaS, and SaaS cloud service models at different service levels

3.2.1 Infrastructure-as-a-Service (IaaS)
 This model allows users to use virtualized IT resources for computing, storage, andnetworking. In short, the service is performed by rented cloud infrastructure.
 The user can deploy and run his applications over his chosen OS environment.
 The user does not manage or control the underlying cloud infrastructure, but hascontrol over the OS, storage, deployed applications, and possibly select networkingcomponents.
 This IaaS model encompasses storage as a service, compute instances as a service, andcommunication as a service.
 The Virtual Private Cloud (VPC) shows how to provide Amazon EC2 clusters and S3storage to multiple users.Many startup cloud providers have appeared in recent years. GoGrid, FlexiScale, andAneka are good examples. Table 4.1 summarizes the IaaS offerings by five public cloudproviders

Table 4.1 Public Cloud Offerings of IaaS

Cloud Name VM Instance capacity
API and Access

Tools
Hypervisor,

Guest OSAmazon EC2 Each instance has 1-20 EC2 processor,1.7-15GB memory, 160-1.69 TB storage CLI or Web ServicePortal Xen, Linux,WindowsGoGrid Each instance has 1-6 CPUs, 0.5-8 GBmemory, 30-480 GB storage REST, Java, PHP,Python, Ruby Xen, Linux,WindowsRackspaceCloud Each instance has four core CPU, 0.25-16GB memory, 10-620 GB storage REST, Java, PHP,Python, Ruby, C#.NET Xen, Linux
FlexiScale inthe UK Each instance has 1-4 CPUs, 0.5-16GBmemory, 20-270 TB storage Web Console Xen, Linux,WindowsJoyent CLoud Each instance has up to eight CPUs,0.25-32 GB of memory,30-480 GB storage No Specific API,SSH,Virtual/Min OS levelVirtualization,Open Solaris

Introduction to Grid Computing

Page 82 Under Regulation 2013 Anna University

Example IaaS
Amazon VPC for Multiple TenantsA user can use a private facility for basic computations. When he must meet a specificworkload requirement, he can use the Amazon VPC to provide additional EC2 instances ormore storage (S3) to handle urgent applications. Figure 3.6 shows VPC which is essentially aprivate cloud designed to address the privacy concerns of public clouds that hamper theirapplication when sensitive data and software are involved.

Figure 3.6 Amazon VPC (Virtual Private Cloud)Amazon EC2 provides the following services: resources from multiple data centersglobally distributed, CL1, web services (SOAP and Query), web-based console user interfaces,access to VM instances via SSH and Windows, 99.5 percent available agreements, per-hourpricing, Linux and Windows OSes, and automatic scaling and load balancing. VPC allows theuser to isolate provisioned AWS processors, memory, and storage from interference by otherusers. Both auto-scaling and elastic load balancing services can support related demands.Auto-scaling enables users to automatically scale their VM instance capacity up or down. Withauto-scaling, one can ensure that a sufficient number of Amazon EC2 instances are provisionedto meet desired performance. Or one can scale down the VM instance capacity to reduce costs,when the workload is reduced.
3.2.2 Platform as a Service (PaaS)

 PaaS provides a platform allowing customers to develop, run, and manage applicationswithout the complexity of building and maintaining the infrastructure typicallyassociated with developing and launching an app.
 The platform cloud is an integrated computer system consisting of both hardware andsoftware infrastructure.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 83

 The user application can be developed on this virtualized cloud platform using someprogramming languages and software tools supported by the provider (e.g., Java,Python, .NET).
 The user does not manage the underlying cloud infrastructure.
 The cloud provider supports user application development and testing on a well-defined service platform.
 This PaaS model enables a collaborated software development platform for users fromdifferent parts of the world.
 This model also encourages third parties to provide software management,integration, and service monitoring solutions..Table 3.2 highlights cloud platform services offered by five PaaS services

Table 3.2 Five Public Cloud Offerings of PaaS

Cloud Name
Language an developer

Tools
Programming Models

supported by Provider
Target Application
and Storage OptionGoogle App Engine Python, Java, Eclipse-based IDE MapReduce, WebProgramming on demand Web application andBig Table StorageSalesforce.com Apex, Eclipse-based IDE,web based Wizard Workflow, Excel-likeformula, Web programmingon demand Business applicationssuch as CRMMicrosoft Azure .NET, Azure tools for MSVisual Studio Unrestricted Model Enterprise an webapplicationsAmazon ElasticMap Reduce Hive, Pig, Cascading,Java, Ruby, Perl, Python,PHP, R, C++ MapReduce Data processing ande-commerceAneka .NET, stand-alone SDK Threads, Task, MapReduce .NET enterpriseapplications, HPC

Example PaaS
Google App Engine for PaaS ApplicationsAs web applications are running on Google’s server clusters, they share the samecapability with many other users. The applications have features such as automatic scaling andload balancing which are very convenient while building web applications. The distributedscheduler mechanism can also schedule tasks for triggering events at specified times andregular intervals. Figure 3.7 shows the operational model for GAE. To develop applicationsusing GAE, a development environment must be provided.Google provides a fully featured local development environment that simulates GAE onthe developer’s computer. All the functions and application logic can be implemented locallywhich is quite similar to traditional software development. The coding and debugging stagescan be performed locally as well. After these steps are finished, the SDK provided provides atool for uploading the user’s application to Google’s infrastructure where the applications areactually deployed. Many additional third-party capabilities, including software management,integration, and service monitoring solutions, are also provided.

Introduction to Grid Computing

Page 84 Under Regulation 2013 Anna University

Figure 3.7 Google App Engine platform for PaaS operations

3.2.3 Software as a Service (SaaS)
 The SaaS model provides software applications as a service.
 As a result, on the customer side, there is no upfront investment in servers or softwarelicensing.
 On the provider side, costs are kept rather low, compared with conventional hosting ofuser applications.
 Customer data is stored in the cloud that is either vendor proprietary or publiclyhosted to support PaaS and IaaS.The best examples of SaaS services include Google Gmail and docs, MicrosoftSharePoint, and the CRM software from Salesforce.com. They are all very successful inpromoting their own business or are used by thousands of small businesses in their day-to-day operations. Providers such as Google and Microsoft offer integrated IaaS and PaaSservices, whereas others such as Amazon and GoGrid offer pure IaaS services and expect third-party PaaS providers such as Manjrasoft to offer application development and deploymentservices on top of their infrastructure services. To identify important cloud applications inenterprises, the success stories of three real-life cloud applications are presented in Examplesfor HTC, news media, and business transactions. The benefits of using cloud services areevident in these SaaS applications.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 85

Example:
Three Success Stories on SaaS Applications1. To discover new drugs through DNA sequence analysis, Eli Lily Company has usedAmazon’s AWS platform with provisioned server and storage clusters to conduct high-performance biological sequence analysis without using an expensive supercomputer. Thebenefit of this IaaS application is reduced drug deployment time with much lower costs.2. The New York Times has applied Amazon’s EC2 and S3 services to retrieve useful pictorialinformation quickly from millions of archival articles and newspapers. The New YorkTimes has significantly reduced the time and cost in getting the job done.3. Pitney Bowes, an e-commerce company, offers clients the opportunity to perform B2Btransactions using the Microsoft Azure platform, along with .NET and SQL services. Theseofferings have significantly increased the company’s client base.
3.2.4 Mashup of Cloud ServicesAt the time of this writing, public clouds are in use by a growing number of users. Dueto the lack of trust in leaking sensitive data in the business world, more and more enterprises,organizations, and communities are developing private clouds that demand deepcustomization. An enterprise cloud is used by multiple users within an organization. Each usermay build some strategic applications on the cloud, and demands customized partitioning ofthe data, logic, and database in the metadata representation. More private clouds may appearin the future.Based on a 2010 Google search survey, interest in grid computing is declining rapidly.Cloud mashups have resulted from the need to use multiple clouds simultaneously or insequence. For example, an industrial supply chain may involve the use of different cloudresources or services at different stages of the chain. Some public repository providesthousands of service APIs and mashups for web commerce services. Popular APIs are providedby Google Maps, Twitter, YouTube, Amazon eCommerce, Salesforce.com, etc.
3.3 Pros and Cons of cloud computing
Advantages of cloud computing

 No cost on infrastructure: Cloud computing is divided in 3 major categories as pertheir services like IaaS, PaaS, SaaS. In all these categories, one thing is common thatyou don’t need to invest on hardware or any infrastructure. In general, everyorganization has to spend a lot on their IT infrastructure to setup and hire aspecialized team. Servers, network devices, ISP connections, storage and software –these are the major things on which you need to invest, if we talk about general ITinfrastructure. But if you move to cloud computing services, then you don’t need toinvest on these. You just go to cloud services provider and buy the cloud service.
 Minimum management and cost: Since one doesn’t need to invest on theinfrastructure, the cost of managing it is also saved. As for IT infrastructure, one needsto hire qualified staff to manage it. While on cloud, the management of itsinfrastructure is solely of the cloud provider and not of the cloud user, thus again costsaving.

Introduction to Grid Computing

Page 86 Under Regulation 2013 Anna University

 Forget about administrative or management hassles: Whenever there is purchaseor upgradation of hardware, a lot of time is wasted looking for best vendors, invitingquotations, negotiating rates, taking approvals, generating POs and waiting fordelivery and then in setting up the infrastructure. This whole process includes lots ofadministrative/managerial tasks that waste a lot of time. While in cloud services, youjust need to compare the best cloud service providers and their plans and buy from theone that matches your requirement. And this whole process doesn’t take much timeand saves a lots of efforts. Your maintenance tasks are also eliminated on cloud.
 Accessibility and pay per use: Cloud resources are easily accessible from around theglobe – anytime, anywhere and from any device and you have complete access to yourresources. This decides your billing also -you only pay for what you use and how muchyou use. It’s like your phone or electricity bill. But on other IT infrastructure, onespends the complete amount in one go and it is very-very rare that those resources areused optimally and thus the investment goes waste.
 Reliability: Your infrastructure on cloud increases reliability and availability ofapplications and services. Cloud services run on pooled and redundant infrastructurewhich provides you with higher availability of your services.

Disadvantages of Cloud Computing
 Requires good speed internet with good bandwidth: To access your cloud services,you need to have a good internet connection always with good bandwidth toupload/download files from/to cloud.
 Limited control on infrastructure: Since you are not the owner of infrastructure ofcloud, hence you don’t have or have a limited access/control on cloud infra.
 Restricted or limited flexibility: Although cloud provides a huge list of services butconsuming them comes with a lot of restrictions and limited flexibility for yourapplications or developments.
 Ongoing costs: Though you can save your cost of spending on whole infrastructureand its management, but on cloud you need to keep paying for services as long as youuse them. But in traditional methods, you only need to invest once.
 Security: Security of data is big concern for everyone. Since cloud services are publichence it depends on the provider as to how they are taking care of your data. So, beforeopting cloud services, it is required that you find a provider who follows maxcompliances for data security.

3.4 Implementation Levels of VirtualizationVirtualization is a computer architecture technology by which multiple virtualmachines (VMs) are multiplexed in the same hardware machine. The purpose of a VM is to
enhance resource sharing by many users and improve computer performance in terms ofresource utilization and application flexibility. Hardware resources (CPU, memory, I/Odevices, etc.) or software resources (operating system and software libraries) can bevirtualized in various functional layers. The idea is to separate the hardware from the softwareto yield better system efficiency. Virtualization techniques can be applied to enhance the
use of compute engines, networks, and storage.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 87

In this chapter we will discuss VMs and their applications for building distributed systems.With sufficient storage, any computer platform can be installed in another host computer,even if they use processors with different instruction sets and run with distinct operatingsystems on the same hardware.
3.4.1 Levels of Virtualization ImplementationA traditional computer runs with a host operating system specially tailored for itshardware architecture, as shown in Figure 3.8(a). After virtualization, different userapplications managed by their own operating systems (guest OS) can run on the samehardware, independent of the host OS. This is often done by adding additional software, calleda virtualization layer as shown in Figure 3.8(b). This virtualization layer is known ashypervisor or virtual machine monitor (VMM). The VMs are shown in the upper boxes, whereapplications run with their own guest OS over the virtualized CPU, memory, and I/O resources.

Figure 3.8 The architecture of a computer system before and after virtualization, where
VMM stands for virtual machine monitorThe main function of the software layer for virtualization is to virtualize the physicalhardware of a host machine into virtual resources to be used by the VMs, exclusively. This canbe implemented at various operational levels. The virtualization software creates theabstraction of VMs by interposing a virtualization layer at various levels of a computer system.Common virtualization layers include the instruction set architecture (ISA) level, hardwarelevel, operating system level, library support level, and application level (see Figure 3.9).

Introduction to Grid Computing

Page 88 Under Regulation 2013 Anna University

Figure 3.9 Virtualization ranging from hardware to applications in five abstraction
levels.

3.4.1.1 Instruction Set Architecture Level (ISA)
 At the ISA level, virtualization is performed by follow a given ISA by the ISA of the hostmachine. For example, MIPS binary code can run on an x86-based host machine withthe help of ISA emulation.
 With this approach, it is possible to run a large amount of legacy binary code writtenfor various processors on any given new hardware host machine.
 Instruction set emulation leads to virtual ISAs created on any hardware machine.

Code interpretation: The basic emulation method is through code interpretation. Aninterpreter program interprets the source instructions to target instructions one by one. Onesource instruction may require tens or hundreds of native target instructions to perform itsfunction. Obviously, this process is relatively slow.
Dynamic binary translation: For better performance, dynamic binary translation is used.This approach translates basic blocks of dynamic source instructions to target instructions.The basic blocks can also be extended to program traces or super blocks to increasetranslation efficiency.

 Instruction set emulation requires binary translation and optimization. A virtualinstruction set architecture (V-ISA) thus requires adding a processor-specific softwaretranslation layer to the compiler.
3.4.1.2 Hardware Abstraction Level

 Hardware-level virtualization is performed right on top of the bare hardware.
 This approach generates a virtual hardware environment for a VM and the processmanages the underlying hardware through virtualization.
 The idea is to virtualize a computer’s resources, such as its processors, memory, andI/O devices.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 89

 The intention is to upgrade the hardware utilization rate by multiple usersconcurrently. For example the Xen hypervisor has been applied to virtualize x86-basedmachines to run Linux or other guest OS applications.
3.4.1.3 Operating System Level

 This refers to an abstraction layer between traditional OS and user applications.
 OS-level virtualization creates isolated containers on a single physical server and theOS instances to utilize the hardware and software in data centers.
 The containers behave like real servers.
 OS-level virtualization is commonly used in creating virtual hosting environments toallocate hardware resources among a large number of mutually distrusting users.
 It is also used in consolidating server hardware by moving services on separate hostsinto containers or VMs on one server.

3.4.1.4 Library Support Level
 Most applications use APIs exported by user-level libraries rather than using lengthysystem calls by the OS.
 Virtualization with library interfaces is possible by controlling the communication linkbetween applications and the rest of a system through API hooks.
 The software tool WINE has implemented this approach to support Windowsapplications on top of UNIX hosts.
 Another example is the vCUDA which allows applications executing within VMs toleverage GPU hardware acceleration.

3.4.1.5 User-Application Level or Process Level VirtualizationVirtualization at the application level virtualizes an application as a VM. On atraditional OS, an application often runs as a process. Therefore, application-level
virtualization is also known as process-level virtualization. The most popular approach is todeploy high level language (HLL) VMs.

 In this scenario, the virtualization layer sits as an application program on top of theoperating system, and the layer exports an abstraction of a VM that can run programswritten and compiled to a particular abstract machine definition.
 Any program written in the HLL and compiled for this VM will be able to run on it. TheMicrosoft .NET CLR and Java Virtual Machine (JVM) are two good examples of this classof VM.
 Other forms of application-level virtualization are known as application isolation,application sandboxing, or application streaming.
 The process involves wrapping the application in a layer that is isolated from the hostOS and other applications.
 The result is an application that is much easier to distribute and remove from userworkstations. An example is the LANDesk application virtualization platform whichdeploys software applications as self-contained, executable files in an isolatedenvironment without requiring installation, system modifications, or elevated securityprivileges.

Introduction to Grid Computing

Page 90 Under Regulation 2013 Anna University

3.4.1.6 Relative Merits of Different ApproachesTable 3.3 compares the relative merits of implementing virtualization at various levels.The column headings correspond to four technical merits. “Higher Performance” and“Application Flexibility” are self-explanatory. “Implementation Complexity” implies the cost toimplement that particular virtualization level. “Application Isolation” refers to the effortrequired to isolate resources committed to different VMs. Each row corresponds to aparticular level of virtualization. Overall, hardware and OS support will yield the highestperformance. However, the hardware and application levels are also the most expensive toimplement. ISA implementation offers the best application flexibility.
Table 3.3 Relative Merits of Virtualization at Various Levels (More “X”’s Means Higher
Merit, with a Maximum of 5 X’s)

Level of
Implementation

Higher
Performance

Application
Flexibility

Implementation
Complexity

Application
IsolationIAS X X X X X X X X X X XHardware-LevelVirtualization X X X X X X X X X X X X X X X XOS- LevelVirtualization X X X X X X X X X X XRuntime librarysupport X X X X X X X X XUser applicationlevel X X X X X X X X X X X X

3.4.2 VMM Design Requirements and Providers
Virtual Machine Monitor (VMM):

 Hardware-level virtualization inserts a layer between real hardware and traditionaloperating systems, this layer is commonly called the Virtual Machine Monitor (VMM)and it manages the hardware resources of a computing system.
 Each time programs access the hardware the VMM captures the process that is acts asa traditional OS.
 One hardware component, such as the CPU, can be virtualized as several virtual copies.Therefore, several traditional operating systems which are the same or different cansit on the same set of hardware simultaneously.
 There are three requirements for a VMM.

o First, a VMM should provide an environment for programs which isessentially identical to the original machine.
o Second, programs run in this environment should show, at worst, only minor

decreases in speed.
o Third, a VMM should be in complete control of the system resources.

 Any program run under a VMM should exhibit a function identical to that which itruns on the original machine directly.
 Two possible exceptions in terms of differences are permitted with this requirement:

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 91

 differences caused by the availability of system resources and
 differences caused by timing dependencies. The former arises when morethan one VM is running on the same machine.A VMM should demonstrate efficiency in using the VMs. Compared with a physicalmachine, no one prefers a VMM if its efficiency is too low. Traditional emulators and completesoftware interpreters (simulators) emulate each instruction by means of functions or macros.Such a method provides the most flexible solutions for VMMs. However, emulators orsimulators are too slow to be used as real machines. To guarantee the efficiency of a VMM, astatistically dominant subset of the virtual processor’s instructions needs to be executeddirectly by the real processor, with no software intervention by the VMM.Complete control of these resources by a VMM includes the following aspects:(1) The VMM is responsible for allocating hardware resources for programs;(2) It is not possible for a program to access any resource not explicitly allocated to it; and(3) It is possible under certain circumstances for a VMM to regain control of resources alreadyallocated.Not all processors satisfy these requirements for a VMM. A VMM is tightly related tothe architectures of processors. It is difficult to implement a VMM for some types ofprocessors, such as the x86. Specific limitations include the inability to trap on some privilegedinstructions. If a processor is not designed to support virtualization primarily, it is necessaryto modify the hardware to satisfy the three requirements for a VMM. This is known as

hardware-assisted virtualization.
3.4.3 Virtualization Support at the OS LevelWith the help of VM technology, a new computing mode known as cloud computing isemerging. Cloud computing is transforming the computing landscape by shifting the hardwareand staffing costs of managing a computational center to third parties, just like banks.Cloud computing has at least two challenges:
 The first is the ability to use a variable number of physical machines and VM instancesdepending on the needs of a problem. For example, a task may need only a single CPUduring some phases of execution but may need hundreds of CPUs at other times.
 The second challenge concerns the slow operation of instantiating new VMs. Currently,new VMs originate either as fresh boots or as replicates of a template VM, unaware ofthe current application state.

3.4.3.1 Why OS-Level Virtualization?OS-level virtualization provides a feasible solution for these hardware-levelvirtualization issues.It is slow to initialize a hardware-level VM because each VM creates its own imagefrom scratch. In a cloud computing environment, perhaps thousands of VMs need to beinitialized simultaneously. Besides slow operation, storing the VM images also becomes anissue. As a matter of fact, there is considerable repeated content among VM images. Moreover,full virtualization at the hardware level also has the disadvantages of slow performance andlow density, and the need for para-virtualization to modify the guest OS. To reduce the

Introduction to Grid Computing

Page 92 Under Regulation 2013 Anna University

performance overhead of hardware-level virtualization, even hardware modification is
needed.Operating system virtualization inserts a virtualization layer inside an operating system topartition a machine’s physical resources.It enables multiple isolated VMs within a single operating system kernel. Thiskind of VM is often called a virtual execution environment (VE), Virtual Private System (VPS),
or simply container. From the user’s point of view, VEs look like real servers. Thismeans a VE has its own set of processes, file system, user accounts, network interfaceswith IP addresses, routing tables, firewall rules, and other personal settings. Although VEscan be customized for different people, they share the same operating system kernel.Therefore, OS-level virtualization is also called single-OS image virtualization. Figure3.10 illustrates operating system virtualization from the point of view of a machine stack.

Figure 3.10 The OpenVZ virtualization layer inside the host OS, which provides some OS
images to create VMs quickly.
3.4.3.2 Advantages of OS ExtensionsCompared to hardware-level virtualization, the benefits of OS extensions are twofold:(1) VMs at the operating system level have minimal startup/shutdown costs, low resourcerequirements, and high scalability; and(2) for an OS-level VM, it is possible for a VM and its host environment to synchronize statechanges when necessary.These benefits can be achieved via two mechanisms of OS-level virtualization:(1) All OS-level VMs on the same physical machine share a single operating system kernel; and(2) the virtualization layer can be designed in a way that allows processes in VMs to access asmany resources of the host machine as possible, but never to modify them.In cloud computing, the first and second benefits can be used to overcome the defectsof slow initialization of VMs at the hardware level, and being unaware of the currentapplication state, respectively.
3.4.3.3 Disadvantages of OS ExtensionsThe main disadvantage of OS extensions is that all the VMs at operating system level ona single container must have the same kind of guest operating system.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 93

That is, although different OS-level VMs may have different operating systemdistributions, they must pertain to the same operating system family. For example, a Windowsdistribution such as Windows XP cannot run on a Linux based container. However, users ofcloud computing have various preferences. Some prefer Windows and others prefer Linux orother operating systems. Therefore, there is a challenge for OS-level virtualization in suchcases. The virtualization layer is inserted inside the OS to partition the hardware resourcesfor multiple VMs to run their applications in multiple virtual environments.To implement OS-level virtualization, isolated execution environments (VMs) shouldbe created based on a single OS kernel. Furthermore, the access requests from a VM need to beredirected to the VM’s local resource partition on the physical machine. For example, thecheroot command in a UNIX system can create several virtual root directories within a hostOS. These virtual root directories are the root directories of all VMs created.There are two ways to implement virtual root directories:
 Duplicating common resources to each VM partition;
 Sharing most resources with the host environment and only creating private resourcecopies on the VM on demand.The first way incurs significant resource costs and overhead on a physical machine. This issueneutralizes the benefits of OS-level virtualization, compared with hardware-assistedvirtualization. Therefore, OS-level virtualization is often a second choice.

3.4.3.4 Virtualization on Linux or Windows PlatformsVirtualization support on the Windows-based platform is still in the research stage.Most reported OS-level virtualization systems are Linux-based.
 The Linux kernel offers an abstraction layer to allow software processes to work withand operate on resources without knowing the hardware details.
 New hardware may need a new Linux kernel to support.
 Therefore, different Linux platforms use patched kernels to provide special support forextended functionality.
 Most Linux platforms are not tied to a special kernel. In such a case, a host can runseveral VMs simultaneously on the same hardware.
 Table 3.4 summarizes several examples of OS level virtualization tools that have beendeveloped in recent years.

Table 3.4 Virtualization Support for Linux and Windows NT Platforms
Virtualization Support and Source of
Information

Brief Introduction on Functionality and
Application PlatformsLinux vServer for Linux platforms(http://linux-vserver.org/) Extends Linux kernels to implement a securitymechanism to help build VMs by settingresource limits and file attributes and changingthe root environment for VM isolation.

Introduction to Grid Computing

Page 94 Under Regulation 2013 Anna University

OpenVZ for Linux platforms ;http://ftp.openvz.org/doc/OpenVZUsers-Guide.pdf) Supports virtualization by creating virtualprivate servers (VPSes); the VPS has its ownfiles, users, process tree, and virtual devices,which can be isolated from other VPSes, andcheck pointing and live migration are supportedFVM (Feather-Weight VirtualMachines) for virtualizing theWindows NT platforms) Uses system call interfaces to create VMs at theNY kernel space; multiple VMs are supported byvirtualized namespace and copy-on-write
 Two OS tools (Linux vServer and OpenVZ) support Linux platforms to run otherplatform-based applications through virtualization.

3.1.4 Middleware Support for Virtualization
 Library-level virtualization is also known as user-level Application Binary Interface

(ABI) or API emulation.
 This type of virtualization can create execution environments for running alien

programs on a platform rather than creating a VM to run the entire operating system.
 API call interception and remapping are the key functions performed.Several library level virtualization systems: namely the Windows Application Binary Interface(WABI), lxrun, WINE, Visual MainWin, and vCUDA, which are summarized in Table 3.5.

Table 3.5 Middleware and Library Support for Virtualization
Middleware or Runtime Library and References
or Web Link

Brief Introduction and Application
PlatformsWABI (http://docs.sun.com/app/docs/doc/802-6306) Middleware that converts Windows systemcalls running on x86 PCs to Solaris system callsrunning on SPARC workstationsLxrun (Linux Run)(http://www.ugcs.caltech.edu/~steven/lxrun/) A system call emulator that enables Linuxapplications written for x86 hosts to run onUNIX systems such as the SCO OpenServerWINE (http://www.winehq.org/) A library support system for virtualizing x86processors to run Windows applications underLinux, FreeBSD, and SolarisVisualMainWin (http://www.mainsoft.com/) A compiler support system to developWindows applications using Visual Studio torun on Solaris, Linux, and AIX hostsvCUDA (IEEE IPDPS 2009) Virtualization support for using general-purpose GPUs to run data-intensiveapplications under a special guest OS

 The WABI offers middleware to convert Windows system calls to Solaris system calls.
 Lxrun is really a system call emulator that enables Linux applications written for x86hosts to run on UNIX systems. Similarly,

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 95

 Wine offers library support for virtualizing x86 processors to run Windowsapplications on UNIX hosts.
 Visual MainWin offers a compiler support system to develop Windows applicationsusing Visual Studio to run on some UNIX hosts.
 The vCUDA is explained with a graphical illustration in Figure 3.11.

Figure 3.11 Basic concept of the vCUDA architecture

Example: T he vCUDA for Virtualization of General -Purpose GPUs
 CUDA is a programming model and library for general-purpose GPUs. It leverages thehigh performance of GPUs to run compute-intensive applications on host operatingsystems.
 vCUDA virtualizes the CUDA library and can be installed on guest OSes. When CUDAapplications run on a guest OS and issue a call to the CUDA API, vCUDA intercepts thecall and redirects it to the CUDA API running on the host OS. Figure 3.11 shows thebasic concept of the vCUDA architecture.
 The vCUDA employs a client-server model to implement CUDA virtualization. Itconsists of three user space components: the vCUDA library, a virtual GPU in the guestOS (which acts as a client), and the vCUDA stub in the host OS (which acts as a server).
 The vCUDA library resides in the guest OS as a substitute for the standard CUDAlibrary. It is responsible for intercepting and redirecting API calls from the client to thestub.
 Besides these tasks, vCUDA also creates vGPUs and manages them.The functionality of a vGPU is threefold:[1] It abstracts the GPU structure and gives applications a uniform view of the underlyinghardware;[2] when a CUDA application in the guest OS allocates a device’s memory the vGPU canreturn a local virtual address to the application and notify the remote stub to allocatethe real device memory,[3] the vGPU is responsible for storing the CUDA API flow.

Introduction to Grid Computing

Page 96 Under Regulation 2013 Anna University

 The vCUDA stub receives and interprets remote requests and creates a correspondingexecution context for the API calls from the guest OS, then returns the results to theguest OS. The vCUDA stub also manages actual physical resource allocation.
3.5 Virtualization Structures/Tools and Mechanisms

 Before virtualization, the operating system manages the hardware.
 After virtualization, a virtualization layer is inserted between the hardware and theoperating system.
 In such a case, the virtualization layer is responsible for converting portions of the realhardware into virtual hardware.
 Therefore, different operating systems such as Linux and Windows can run on thesame physical machine, simultaneously.
 Depending on the position of the virtualization layer, there are three typical classes ofVM architecture., namely the
 hypervisor architecture,
 para-virtualization, and
 host-based virtualization.

3.5.1 Hypervisor and Xen Architecture
 The hypervisor supports hardware-level virtualization on bare metal devices likeCPU, memory, disk and network interfaces.
 The hypervisor software sits directly between the physical hardware and its OS. Thehypervisor provides hyper calls for the guest OSes and applications.
 Hypervisor can assume micro-kernel architecture like the Microsoft Hyper-V. or

monolithic hypervisor architecture like the VMware ESX for server virtualization.
A micro-kernel hypervisor includes only the basic and unchanging functions (such asphysical memory management and processor scheduling).
A monolithic hypervisor implements all the aforementioned functions, including those of thedevice drivers. Therefore, the size of the hypervisor code of a micro-kernel hypervisor issmaller than that of a monolithic hypervisor.
3.5.1.1 The Xen ArchitectureXen

o is an open source hypervisor program developed by Cambridge University.
o is a microkernel hypervisor, which separates the policy from the mechanism.
o hypervisor implements all the mechanisms, leaving the policy to be handled byDomain 0, as shown in Figure 3.12.
o does not include any device drivers natively.
o It just provides a mechanism by which guests OS can have direct access to thephysical devices.
o provides a virtual environment located between the hardware and the OS

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 97

Figure 3.12 The Xen architecture’s special domain 0 for control and I/O, and several
guest domains for user applications.The core components of a Xen system are the

o hypervisor,
o kernel, and
o applications.The organization of the three components is important. Like other virtualizationsystems, many guest OSes can run on top of the hypervisor. However, not all guest OSes arecreated equal, and one in particular controls the others. The guest OS, which has controlability, is called Domain 0, and the others are called Domain U. Domain 0 is a privileged guestOS of Xen. It is first loaded when Xen boots without any file system drivers being available.Domain 0 is designed to access hardware directly and manage devices. Therefore, one of theresponsibilities of Domain 0 is to allocate and map hardware resources for the guest domains(the Domain U domains).Traditionally, a machine’s lifetime can be envisioned as a straight line where thecurrent state of the machine is a point that progresses monotonically as the software executes.During this time, configuration changes are made, software is installed, and patches areapplied. In such an environment, the VM state is akin to a tree: At any point, execution can gointo N different branches where multiple instances of a VM can exist at any point in this tree atany given time. VMs are allowed to roll back to previous states in their execution (e.g., to fixconfiguration errors) or rerun from the same point many times (e.g., as a means of distributingdynamic content or circulating a “live” system image).

3.5.2 Binary Translation with Full VirtualizationHardware virtualization can be classified into two categories:
o full virtualization and
o Host-based virtualization.

Full virtualization does not need to modify the host OS. It relies on binary translation to trapand to virtualized the execution of certain sensitive, non virtualizable instructions. The guestOSes and their applications consist of noncritical and critical instructions.

Introduction to Grid Computing

Page 98 Under Regulation 2013 Anna University

Host-based system, both a host OS and a guest OS are used. A virtualization software layer isbuilt between the host OS and guest OS.
3.5.2.1 Full Virtualization

 With full virtualization, noncritical instructions run on the hardware directly whilecritical instructions are discovered and replaced with traps into the VMM to beemulated by software.
 Both the hypervisor and VMM approaches are considered full virtualization.
 Noncritical instructions do not control hardware or threaten the security of thesystem, but critical instructions do. Therefore, running noncritical instructions onhardware not only can promote efficiency, but also can ensure system security.

3.5.2.2 Binary Translation of Guest OS Requests Using a VMMAs shown in Figure 3.13, VMware puts the VMM at Ring 0 and the guest OS at Ring 1.
 The VMM scans the instruction stream and identifies the privileged, control andbehavior-sensitive instructions. When these instructions are identified, they aretrapped into the VMM, which emulates the behavior of these instructions. The methodused in this emulation is called binary translation.
 Binary translation employs a code cache to store translated hot instructions toimprove performance, but it increases the cost of memory usage.
 The performance of full virtualization involves binary translation which is time-consuming, I/O-intensive applications is a really a big challenge.

Figure 3.13 Indirect executions of complex instructions via binary translation of guest
OS requests using the VMM plus direct execution of simple instructions on the same
host.

3.5.2.3 Host-Based Virtualization
 Installs a virtualization layer on top of the host OS which is responsible for managingthe hardware.
 Dedicated applications may run on the VMs, other applications can also run with thehost OS directly.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 99

This host-based architecture has some distinct advantages,1. The user can install this VM architecture without modifying the host OS. Thevirtualizing2. \3. 2 software can rely on the host OS to provide device drivers and other low-levelservices. This will simplify the VM design and ease its deployment.4. The host-based approach appeals to many host machine configurations.Compared to the hypervisor/VMM architecture, the performance of the host-basedarchitecture may also be low. When an application requests hardware access, itinvolves four layers of mapping which downgrades performance significantly. Whenthe ISA of a guest OS is different from the ISA of the underlying hardware, binarytranslation must be adopted. Although the host-based architecture has flexibility, theperformance is too low to be useful in practice.
3.5.3 Para-Virtualization with Compiler Support

 Para-virtualization needs to modify the guest operating systems.
 A para-virtualized VM provides special APIs requiring substantial OS modifications inuser applications.
 Para-virtualization attempts to reduce the virtualization overhead, and thus improveperformance by modifying only the guest OS kernel.

Figure 3.14 Para-virtualized VM architecture,
which involves modifying the guest OS kernel
to replace nonvirtualizable instructions with
hypercalls for the hypervisor or the VMM to
carry out the virtualization process.

Figure 3.15 The use of a para-
virtualized guest OS assisted by an
intelligent compiler to replace
nonvirtualizable OS instructions by
hypercalls.

Figure 3.14 illustrates the concept of a para-virtualized VM architecture. The guestoperating systems are para-virtualized. They are assisted by an intelligent compiler to replacethe nonvirtualizable OS instructions by hypercalls as illustrated in Figure 3.15. The traditionalx86 processor offers four instruction execution rings: Rings 0, 1, 2, and 3. The lower the ring

Introduction to Grid Computing

Page 100 Under Regulation 2013 Anna University

number, the higher the privilege of instruction being executed. The OS is responsible formanaging the hardware and the privileged instructions to execute at Ring 0, while user-levelapplications run at Ring 3. The best example of para-virtualization is the KVM to be describedbelow.
3.5.3.1 Para-Virtualization ArchitectureWhen the x86 processor is virtualized, a virtualization layer is inserted between thehardware and the OS. According to the x 86 ring definitions, the virtualization layer shouldalso be installed at Ring 0. Different instructions at Ring 0 may cause some problems. In Figure3.15, we show that para-virtualization replaces nonvirtualizable instructions with hypercallsthat communicate directly with the hypervisor or VMM. However, when the guest OS kernel ismodified for virtualization, it can no longer run on the hardware directly.
Pros and Cons of para-virtualizationPara-virtualization reduces the overhead, it has incurred other problems.

 First, its compatibility and portability may be in doubt, because it must support theunmodified OS as well.
 Second, the cost of maintaining para-virtualized OSes is high, because they may requiredeep OS kernel modifications.
 Finally, the performance advantage of para-virtualization varies greatly due toworkload variations.Compared with full virtualization, para-virtualization is relatively easy and morepractical. The main problem in full virtualization is its low performance in binary translation.To speed up binary translation is difficult. Therefore, many virtualization products employ thepara-virtualization architecture. The popular Xen, KVM, and VMware ESX are good examples.

3.5.3.2 KVM (Kernel-Based VM)
 This is a Linux para-virtualization system a part of the Linux version 2.6.20 kernel.
 Memory management and scheduling activities are carried out by the existing Linuxkernel.
 The KVM does the rest, which makes it simpler than the hypervisor that controls theentire machine.
 KVM is a hardware-assisted para-virtualization tool, which improves performance andsupports unmodified guest OSes such as Windows, Linux, Solaris, and other UNIXvariants.

3.5.3.3 Para-Virtualization with Compiler Support
 Para-virtualization handles intercepts and emulates privileged and sensitiveinstructions at compile time.
 The guest OS kernel is modified to replace the privileged and sensitive instructionswith hypercalls to the hypervisor or VMM.
 The guest OS running in a guest domain may run at Ring 1 instead of at Ring 0. Thisimplies that the guest OS may not be able to execute some privileged and sensitiveinstructions.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 101

 The privileged instructions are implemented by hypercalls to the hypervisor.
 After replacing the instructions with hypercalls, the modified guest OS emulates thebehavior of the original guest OS.
 On an UNIX system, a system call involves an interrupt or service routine. Thehypercalls apply a dedicated service routine in Xen.

Example: VMware ESX Server for Para-VirtualizationVMware pioneered the software market for virtualization. The company has developedvirtualization tools for desktop systems and servers as well as virtual infrastructure for largedata centers. ESX is a VMM or a hypervisor for bare-metal x86 symmetric multiprocessing(SMP) servers. It accesses hardware resources such as I/O directly and has complete resourcemanagement control.An ESX-enabled server consists of four components: a virtualization layer, a resourcemanager, hardware interface components, and a service console, as shown in Figure 3.16. Toimprove performance, the ESX server employs a para-virtualization architecture in which theVM kernel interacts directly with the hardware without involving the host OS.

FIGURE 3.16 The VMware ESX server architecture using para-virtualizationThe VMM layer virtualizes the physical hardware resources such as CPU, memory,network and disk controllers, and human interface devices. Every VM has its own set of virtualhardware resources. The resource manager allocates CPU, memory disk, and networkbandwidth and maps them to the virtual hardware resource set of each VM created. Hardwareinterface components are the device drivers and the VMware ESX Server File System. Theservice console is responsible for booting the system, initiating the execution of the VMM andresource manager, and relinquishing control to those layers. It also facilitates the process forsystem administrators.

Introduction to Grid Computing

Page 102 Under Regulation 2013 Anna University

3.6 Virtualization of CPU, Memory, and I/O DevicesTo support virtualization, x86 employ a special running mode and instructions, knownas hardware-assisted virtualization. In this way, the VMM and guest OS run in differentmodes and all sensitive instructions of the guest OS and its applications are trapped in theVMM. To save processor states, mode switching is completed by hardware.
3.6.1 Hardware Support for VirtualizationModern operating systems and processors permit multiple processes to runsimultaneously. If there is no protection mechanism in a processor, all instructions fromdifferent processes will access the hardware directly and cause a system crash. Therefore, allprocessors have at least two modes, user mode and supervisor mode, to ensure controlledaccess of critical hardware. Instructions running in supervisor mode are called privileged
instructions. Other instructions are unprivileged instructions.In a virtualized environment, it is more difficult to make OSes and applications runcorrectly because there are more layers in the machine stack.

 The VMware Workstation is a VM software suite for x86 and x86-64 computers. Thissoftware suite allows users to set up multiple x86 and x86-64 virtual computers and touse one or more of these VMs simultaneously with the host operating system. TheVMware Workstation assumes the host-based virtualization.
 Xen is a hypervisor for use in IA-32, x86-64, Itanium, and PowerPC 970 hosts. Actually,Xen modifies Linux as the lowest and most privileged layer, or a hypervisor.
 KVM (Kernel-based Virtual Machine) is a Linux kernel virtualization infrastructure.KVM can support hardware-assisted virtualization and para-virtualization by using theIntel VT-x or AMD-v and VirtIO framework, respectively.
 The VirtIO framework includes a para-virtual Ethernet card, a disk I/O controller, aballoon device for adjusting guest memory usage, and a VGA graphics interface usingVMware drivers.

Example: Hardware Support for Virtualization in the Intel x86 ProcessorSince software-based virtualization techniques are complicated and incur performanceoverhead, Intel provides a hardware-assist technique to make virtualization easy and improveperformance. Figure 3.17 provides an overview of Intel’s full virtualization techniques. Forprocessor virtualization, Intel offers the VT-x or VT-i technique. VT-x adds a privileged mode(VMX Root Mode) and some instructions to processors. This enhancement traps all sensitiveinstructions in the VMM automatically. For memory virtualization, Intel offers the EPT, whichtranslates the virtual address to the machine’s physical addresses to improve performance.For I/O virtualization, Intel implements VT-d and VT-c to support this.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 103

Figure 3.17 Intel hardware support for virtualization of processor, memory, and I/O
devices.

3.6.2 CPU VirtualizationA VM is a duplicate of an existing computer system in which a majority of the VMinstructions are executed on the host processor in native mode. Thus, unprivilegedinstructions of VMs run directly on the host machine for higher efficiency. Other criticalinstructions should be handled carefully for correctness and stability.The critical instructions are divided into three categories:
 privileged instructions- execute in a privileged mode and will be trapped if executedoutside this mode
 Control sensitive instructions- attempt to change the configuration of resourcesused.
 Behavior-sensitive instructions- have different behaviors depending on theconfiguration of resources, including the load and store operations over the virtualmemory.CPU architecture is virtualizable if it supports the ability to run the VM’s privileged

and unprivileged instructions in the CPU’s user mode while the VMM runs in supervisormode.When the privileged instructions like control and behavior sensitive instructions of a VM areexecuted, they are trapped in the VMM.
 In this case, the VMM acts as a unified mediator for hardware access from differentVMs to guarantee the correctness and stability of the whole system.Example:

o RISC CPU architectures can be naturally virtualized because all control- andbehavior-sensitive instructions are privileged instructions.
o x86 CPU architectures are not primarily designed to support virtualization. This isbecause about 10 sensitive instructions, such as SGDT and SMSW, are not

Introduction to Grid Computing

Page 104 Under Regulation 2013 Anna University

privileged instructions. When these instructions execute in virtualization, theycannot be trapped in the VMM.
o On a native UNIX-like system, a system call triggers the 80h interrupt and passescontrol to the OS kernel. The interrupt handler in the kernel is then invoked toprocess the system call.
o On a para-virtualization system such as Xen, a system call in the guest OS firsttriggers the 80h interrupt normally. Almost at the same time, the 82h interrupt inthe hypervisor is triggered. Incidentally, control is passed on to the hypervisor aswell. When the hypervisor completes its task for the guest OS system call, itpasses control back to the guest OS kernel.

3.6.2.1 Hardware-Assisted CPU Virtualization
 This technique attempts to simplify virtualization because full or paravirtualization iscomplicated.
 Intel and AMD add an additional mode called privilege mode level to x86 processors.
 All the privileged and sensitive instructions are trapped in the hypervisorautomatically.
 This technique removes the difficulty of implementing binary translation of fullvirtualization. It also lets the operating system run in VMs without modification.

Example Intel Hardware-Assisted CPU VirtualizationAlthough x86 processors are not virtualizable primarily, great effort is taken tovirtualize them. They are used widely in comparing RISC processors that the bulk of x86-basedlegacy systems cannot discard easily. Virtualization of x86 processors is detailed in thefollowing sections. Intel’s VT-x technology is an example of hardware-assisted virtualization,as shown in Figure 3.18. Intel calls the privilege level of x86 processors the VMX Root Mode. Inorder to control the start and stop of a VM and allocate a memory page to maintain the CPUstate for VMs, a set of additional instructions is added. At the time of this writing, Xen,VMware, and the Microsoft Virtual PC all implement their hypervisors by using the VT-xtechnology.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 105

Figure 3.18 Intel hardware-assisted CPU virtualizationGenerally, hardware-assisted virtualization should have high efficiency. However,since the transition from the hypervisor to the guest OS incurs high overhead switchesbetween processor modes, it sometimes cannot outperform binary translation. Hence,virtualization systems such as VMware now use a hybrid approach, in which a few tasks areoffloaded to the hardware but the rest is still done in software. In addition, para-virtualizationand hardware-assisted virtualization can be combined to improve the performance further.
3.6.3 Memory Virtualization

 Virtual memory virtualization is similar to the virtual memory support provided bymodern operating systems.
 In a virtual execution environment, virtual memory virtualization involves sharing thephysical system memory in RAM and dynamically allocating it to the physical memoryof the VMs.
 That means a two-stage mapping process should be maintained by the guest OS andthe VMM, respectively: Virtual memory to physical memory and physical memory tomachine memory.
 The guest OS continues to control the mapping of virtual addresses to the physicalmemory addresses of VMs.
 The guest OS cannot directly access the actual machine memory.
 The VMM is responsible for mapping the guest physical memory to the actual machinememory.

Introduction to Grid Computing

Page 106 Under Regulation 2013 Anna University

Figure 3.19 Two-level memory mapping procedure.Figure 3.19 shows the two-level memory mapping procedure.[1] Each page table of the guest OSes has a separate page table in the VMM corresponding toit, the VMM page table is called the shadow page table. The MMU handles virtual-to-
physical translations as defined by the OS.[2] The physical memory addresses are translated to machine addresses using anotherset of page tables defined by the hypervisor. Modern operating systems maintain a set ofpage tables for every process, the shadow page tables will get flooded, the performanceoverhead and cost of memory will be very high.

 VMware uses shadow page tables to perform virtual-memory-to-machine-memoryaddress translation. Processors use TLB hardware to map the virtual memory directlyto the machine memory to avoid the two levels of translation on every access.When the guest OS changes the virtual memory to a physical memory mapping, theVMM updates the shadow page tables to enable a direct lookup.
 The AMD Barcelona processor has featured hardware-assisted memory virtualizationsince 2007.It provides hardware assistance to the two-stage address translation in a virtualexecution environment by using a technology called nested paging.

Example: Extended Page Table by Intel for Memory VirtualizationSince the efficiency of the software shadow page table technique was too low, Inteldeveloped a hardware-based EPT technique to improve it, as illustrated in Figure 3.20. Inaddition, Intel offers a Virtual Processor ID (VPID) to improve use of the TLB. Therefore, theperformance of memory virtualization is greatly improved. In Figure 3.20, the page tables ofthe guest OS and EPT are all four-level.When a virtual address needs to be translated, the CPU will first look for the L4 pagetable pointed to by Guest CR3. Since the address in Guest CR3 is a physical address in the guestOS, the CPU needs to convert the Guest CR3 GPA to the host physical address (HPA) using EPT.In this procedure, the CPU will check the EPT TLB to see if the translation is there. If there isno required translation in the EPT TLB, the CPU will look for it in the EPT. If the CPU cannotfind the translation in the EPT, an EPT violation exception will be raised.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 107

When the GPA of the L4 page table is obtained, the CPU will calculate the GPA of the L3page table by using the GVA and the content of the L4 page table. If the entry corresponding tothe GVA in the L4 page table is a page fault, the CPU will generate a page fault interrupt andwill let the guest OS kernel handle the interrupt. When the PGA of the L3 page table isobtained, the CPU will look for the EPT to get the HPA of the L3 page table, as describedearlier. To get the HPA corresponding to a GVA, the CPU needs to look for the EPT five times,and each time, the memory needs to be accessed four times. Therefore, there are 20 memoryaccesses in the worst case, which is still very slow. To overcome this shortcoming, Intelincreased the size of the EPT TLB to decrease the number of memory accesses.

Figure 3.20 Memory virtualization using EPT by Intel , the EPT is also known as the
shadow page table

3.6.4 I/O VirtualizationI/O virtualization involves managing the routing of I/O requests between virtualdevices and the shared physical hardware.There are three ways to implement I/O virtualization:
 full device emulation,
 para-virtualization, and
 direct I/O

Full device emulation
 This approach emulates well-known, real-world devices.
 All the functions of a device or bus infrastructure, such as device enumeration,identification, interrupts, and DMA, are replicated in software.

Introduction to Grid Computing

Page 108 Under Regulation 2013 Anna University

 This software is located in the VMM and acts as a virtual device. The I/O accessrequests of the guest OS are trapped in the VMM which interacts with the I/O devices.
 The full device emulation approach is shown in Figure 3.21.
 A single hardware device can be shared by multiple VMs that run concurrently.

FIGURE 3.21 Device emulation for I/O virtualization implemented inside the middle
layer that maps real I/O devices into the virtual devices for the guest device driver to
use.

The para-virtualization method or split driver model
 Consisting of a frontend driver and a backend driver. The frontend driver is running inDomain U and the backend driver is running in Domain 0.
 They interact with each other via a block of shared memory.
 The frontend driver manages the I/O requests of the guest OSes and the backenddriver is responsible for managing the real I/O devices and multiplexing the I/O data ofdifferent VMs.
 Although para-I/O virtualization achieves better device performance than full deviceemulation, it comes with a higher CPU overhead.

Direct I/O virtualization
 The VM access devices directly.
 It can achieve close-to-native performance without high CPU costs.
 There are a lot of challenges for commodity hardware devices.For example, when a physical device is reclaimed (required by workload migration)for later reassignment, it may have been set to an arbitrary state (e.g., DMA to some arbitrarymemory locations) that can function incorrectly or even crash the whole system.
 Hardware-assisted I/O virtualization is critical.Intel VT-d supports the remapping of I/O DMA transfers and device-generatedinterrupts. The architecture of VT-d provides the flexibility to support multiple usagemodels that may run unmodified, special-purpose, or “virtualization-aware” guestOSes.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 109

Self-virtualized I/O (SV-IO)
 The key idea of SVIO is to harness the rich resources of a multicore processor. All tasksassociated with virtualizing an I/O device are encapsulated in SV-IO.
 It provides virtual devices and an associated access API to VMs and a management APIto the VMM. SV-IO defines one virtual interface (VIF) for every kind of virtualized I/Odevice, such as virtual network interfaces, virtual block devices (disk), virtual cameradevices, and others.
 The guest OS interacts with the VIFs via VIF device drivers.
 Each VIF consists of two message queues. One is for outgoing messages to the devicesand the other is for incoming messages from the devices.
 Each VIF has a unique ID for identifying it in SV-IO.

Example: VMware Workstation for I/O VirtualizationThe VMware Workstation runs as an application. It leverages the I/O device support inguest OSes, host OSes, and VMM to implement I/O virtualization. The application portion(VMApp) uses a driver loaded into the host operating system (VMDriver) to establish theprivileged VMM, which runs directly on the hardware. A given physical processor is executedin either the host world or the VMM world, with the VMDriver facilitating the transfer ofcontrol between the two worlds. The VMware Workstation employs full device emulation toimplement I/O virtualization. Figure 3.22 shows the functional blocks used in sending andreceiving packets via the emulated virtual NIC.

Figure 3.22 Functional blocks involved in sending and receiving network packets

Introduction to Grid Computing

Page 110 Under Regulation 2013 Anna University

The virtual NIC models an AMD Lance Am79C970A controller. The device driver for aLance controller in the guest OS initiates packet transmissions by reading and writing asequence of virtual I/O ports; each read or write switches back to the VMApp to emulate theLance port accesses. When the last OUT instruction of the sequence is encountered, the Lanceemulator calls a normal write() to the VMNet driver. The VMNet driver then passes the packetonto the network via a host NIC and then the VMApp switches back to the VMM. The switchraises a virtual interrupt to notify the guest device driver that the packet was sent. Packetreceives occur in reverse.
3.7 Virtual Clusters and Resource ManagementA physical cluster is a collection of servers (physical machines) interconnected by aphysical network such as a LAN. we will study three critical design issues of virtual clusters:live migration of VMs, memory and file migrations, and dynamic deployment of virtualclusters.When a traditional VM is initialized, the administrator needs to manually writeconfiguration information or specify the configuration sources. When more VMs join anetwork, an inefficient configuration always causes problems with overloading orunderutilization. Amazon’s Elastic Compute Cloud (EC2) is a good example of a web servicethat provides elastic computing power in a cloud. EC2 permits customers to create VMs and tomanage user accounts over the time of their use.Most virtualization platforms, including XenServer and VMware ESX Server, support abridging mode which allows all domains to appear on the network as individual hosts. Byusing this mode, VMs can communicate with one another freely through the virtual networkinterface card and configure the network automatically.
3.7.1 Physical versus Virtual ClustersVirtual clusters are built with VMs installed at distributed servers from one or morephysical clusters. The VMs in a virtual cluster are interconnected logically by a virtual networkacross several physical networks. Figure 3.23 illustrates the concepts of virtual clusters andphysical clusters. Each virtual cluster is formed with physical machines or a VM hosted bymultiple physical clusters. The virtual cluster boundaries are shown as distinct boundaries.The provisioning of VMs to a virtual cluster is done dynamically to have the followinginteresting properties:

 The virtual cluster nodes can be either physical or virtual machines. Multiple VMsrunning with different OSes can be deployed on the same physical node.
 A VM runs with a guest OS, which is often different from the host OS, that manages theresources in the physical machine, where the VM is implemented.
 The purpose of using VMs is to consolidate multiple functionalities on the same server.This will greatly enhance server utilization and application flexibility.
 VMs can be colonized (replicated) in multiple servers for the purpose of promotingdistributed parallelism, fault tolerance, and disaster recovery.
 The size (number of nodes) of a virtual cluster can grow or shrink dynamically, similarto the way an overlay network varies in size in a peer-to-peer (P2P) network.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 111

 The failure of any physical nodes may disable some VMs installed on the failing nodes.But the failure of VMs will not pull down the host system.

Figure 3.23 A cloud platform with four virtual clusters over three physical clusters
shaded differentlyThree physical clusters are shown on the left side of Figure 3.23. Four virtual clustersare created on the right, over the physical clusters. The physical machines are also called hostsystems. In contrast, the VMs are guest systems. The host and guest systems may run withdifferent operating systems. Each VM can be installed on a remote server or replicated onmultiple servers belonging to the same or different physical clusters. The boundary of a virtualcluster can change as VM nodes are added, removed, or migrated dynamically over time.Figure 3.24 shows the concept of a virtual cluster based on application partitioning orcustomization. The different colors in the figure represent the nodes in different virtualclusters. As a large number of VM images might be present, the most important thing is todetermine how to store those images in the system efficiently. There are common installationsfor most users or applications, such as operating systems or user-level programming libraries.These software packages can be preinstalled as templates (called template VMs). With thesetemplates, users can build their own software stacks. New OS instances can be copied from thetemplate VM. User-specific components such as programming libraries and applications can beinstalled to those instances.

Introduction to Grid Computing

Page 112 Under Regulation 2013 Anna University

Figure 3.24 The concept of a virtual cluster based on application partitioning

3.7.1.1 Fast Deployment and Effective SchedulingThe system should have the capability of fast deployment. Deployment means two things:
 To construct and distribute software stacks (OS, libraries, applications) to a physicalnode inside clusters as fast as possible,
 To quickly switch runtime environments from one user’s virtual cluster to anotheruser’s virtual cluster. If one user finishes using his system, the corresponding virtualcluster should shut down or suspend quickly to save the resources to run other VMsfor other users.

Green computing
 Previous approaches have focused on saving the energy cost of components in a singleworkstation without a global vision. Consequently, they do not necessarily reduce thepower consumption of the whole cluster.
 Other cluster-wide energy-efficient techniques can only be applied to homogeneousworkstations and specific applications.
 The live migration of VMs allows workloads of one node to transfer to another node.However, it does not guarantee that VMs can randomly migrate among themselves.
 The challenge is to determine how to design migration strategies to implement greencomputing without influencing the performance of clusters.
 Another advantage of virtualization is load balancing of applications in a virtualcluster. Load balancing can be achieved using the load index and frequency of userlogins.
 The automatic scale-up and scale-down mechanism of a virtual cluster can beimplemented based on this model. Consequently, we can increase the resourceutilization of nodes and shorten the response time of systems.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 113

3.7.1.2 High-Performance Virtual StorageThe template VM can be distributed to several physical hosts in the cluster tocustomize the VMs. In addition, existing software packages reduce the time for customizationas well as switching virtual environments.
It is important to efficiently manage the disk spaces occupied by template software
packages.Some storage architecture design can be applied to reduce duplicated blocks in adistributed file system of virtual clusters. Hash values are used to compare the contents of datablocks. Users have their own profiles which store the identification of the data blocks forcorresponding VMs in a user-specific virtual cluster.
New blocks are created when users modify the corresponding data. Newly created
blocks are identified in the users’ profiles.Basically, there are four steps to deploy a group of VMs onto a target cluster:

 preparing the disk image,
 configuring the VMs,
 choosing the destination nodes, and
 executing the VM deployment command on every host.

Many systems use templates to simplify the disk image preparation process.A template is a disk image that includes a preinstalled operating system with orwithout certain application software. Templates could implement the COW (Copy on Write)format. A new COW backup file is very small and easy to create and transfer. Therefore, itdefinitely reduces disk space consumption.
Every VM is configured with a name, disk image, network setting, and allocated CPU and
memory.One needs to record each VM configuration into a file. However, this method isinefficient when managing a large group of VMs. VMs with the same configurations could usepreedited profiles to simplify the process. In this scenario, the system configures the VMsaccording to the chosen profile.
3.7.2 Live VM Migration Steps and Performance Effects
Life migration

 In a cluster built with mixed nodes of host and guest systems, the normal method ofoperation is to run everything on the physical machine.
 When a VM fails, its role could be replaced by another VM on a different node, as longas they both run with the same guest OS.
 This is different from physical-to-physical failover in a traditional physical cluster. Theadvantage is enhanced failover flexibility.
 The potential drawback is that a VM must stop playing its role if its residing host nodefails. However, this problem can be mitigated with VM life migration.

Introduction to Grid Computing

Page 114 Under Regulation 2013 Anna University

Figure 3.25 shows the process of life migration of a VM from host A to host B. The migrationcopies the VM state file from the storage area to the host machine.

Figure 3.25 Live migration process of a VM from one host to another

There are four ways to manage a virtual cluster.
[1]. First, you can use a guest-based manager, by which the cluster manager resides on

a guest system. In this case, multiple VMs form a virtual cluster.For example, openMosix is an open source Linux cluster running different guest systemson top of the Xen hypervisor. Another example is Sun’s cluster Oasis, an experimentalSolaris cluster of VMs supported by a VMware VMM.
[2]. Second, you can build a cluster manager on the host systems.The host-based manager supervises the guest systems and can restart the guest systemon another physical machine. A good example is the VMware HA system that can restart aguest system after failure.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 115

[3]. A third way to manage a virtual cluster is to use an independent cluster manager on
both the host and guest systems.This will make infrastructure management more complex,.

[4]. finally, you can use an integrated cluster on the guest and host systems. This meansthe manager must be designed to distinguish between virtualized resources and physicalresources. Various cluster management schemes can be greatly enhanced when VM lifemigration is enabled with minimal overhead.Furthermore, we should ensure that the migration will not disrupt other active
services residing in the same host through resource contention (e.g., CPU, networkbandwidth).A VM can be in one of the following four states.

 An inactive state is defined by the virtualization platform, under which the VM is notenabled.
 An active state refers to a VM that has been instantiated at the virtualization platformto perform a real task.
 A paused state corresponds to a VM that has been instantiated but disabled to processa task or paused in a waiting state.
 A VM enters the suspended state if its machine file and virtual resources are storedback to the disk.As shown in Figure 3.20, live migration of a VM consists of the following five steps:

Steps 0 and 1: Start migration. This step makes preparations for the migration, includingdetermining the migrating VM and the destination host.
Steps 2: Transfer memory. Since the whole execution state of the VM is stored in memory,sending the VM’s memory to the destination node ensures continuity of the service providedby the VM.
Step 3: Suspend the VM and copy the last portion of the data. The migrating VM’s execution issuspended when the last round’s memory data is transferred.
Steps 4 and 5: Commit and activate the new host. After all the needed data is copied, on thedestination host, the VM reloads the states and recovers the execution of programs in it, andthe service provided by this VM continues.
3.7.3 Migration of Memory, Files, and Network ResourcesSince clusters have a high initial cost of ownership, including space, powerconditioning, and cooling equipment, leasing or sharing access to a common cluster is anattractive solution when demands vary over time. Shared clusters offer economies of scale andmore effective utilization of resources by multiplexing. Early configuration and managementsystems focus on expressive and scalable mechanisms for defining clusters for specific types ofservice, and physically partition cluster nodes among those types. When one system migratesto another physical node, we should consider the following issues.
3.7.3.1 Memory MigrationMoving the memory instance of a VM from one physical host to another is memorymigration. The techniques employed for this purpose depend upon the characteristics ofapplication/workloads supported by the guest OS.

Introduction to Grid Computing

Page 116 Under Regulation 2013 Anna University

Memory migration can be in a range of hundreds of megabytes to a few gigabytes in atypical system today, and it needs to be done in an efficient manner.
Technique for memory migration: Internet Suspend-Resume (ISR)

 Technique exploits temporal locality as memory states
 Temporal locality refers to the fact that the memory states differ only by the amount ofwork done since a VM was last suspended before being initiated for migration.
 To exploit temporal locality, each file in the file system is represented as a tree of

small subfiles.
 A copy of this tree exists in both the suspended and resumed VM instances.
 The advantage of using a tree-based representation of files is that the cachingensures the transmission of only those files which have been changed.The ISR technique deals with situations where the migration of live machines is not a

necessity. Predictably, the downtime (the period during which the service is unavailable dueto there being no currently executing instance of a VM) is high.
3.7.3.2 File System MigrationTo support VM migration, a system must provide each VM with a consistent, location-independent view of the file system that is available on all hosts.

 A simple way to achieve this is to provide each VM with its own virtual disk which thefile system is mapped to and transport the contents of this virtual disk along with theother states of the VM. However, due to the current trend of high-capacity disks,migration of the contents of an entire disk over a network is not a viable solution.
 Another way is to have a global file system across all machines where a VM could belocated. This way removes the need to copy files from one machine to another becauseall files are network-accessible.A distributed file system is used in ISR serving as a transport mechanism forpropagating a suspended VM state.
 The actual file systems themselves are not mapped onto the distributed file system.Instead, the VMM only accesses its local file system.
 The relevant VM files are explicitly copied into the local file system for a resumeoperation and taken out of the local file system for a suspend operation.
 This approach relieves developers from the complexities of implementing severaldifferent file system calls for different distributed file systems.
 It also essentially disassociates the VMM from any particular distributed file systemsemantics. However, this decoupling means that the VMM has to store the contents ofeach VM’s virtual disks in its local files, which have to be moved around with the otherstate information of that VM.In smart copying, the VMM exploits spatial locality.
 Typically, people often move between the same small number of locations, such astheir home and office. In these conditions, it is possible to transmit only the differencebetween the two file systems at suspending and resuming locations.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 117

 This technique significantly reduces the amount of actual physical data that has to bemoved. In situations where there is no locality to exploit, a different approach is tosynthesize much of the state at the resuming site.On many systems, user files only form a small fraction of the actual data on disk.Operating system and application software account for the majority of storage space. Theproactive state transfer solution works in those cases where the resuming site can bepredicted with reasonable confidence.
3.7.3.3 Network MigrationA migrating VM should maintain all open network connections without relying onforwarding mechanisms on the original host or on support from mobility or redirectionmechanisms. To enable remote systems to locate and communicate with a VM, each VM mustbe assigned a virtual IP address known to other entities. This address can be distinct from theIP address of the host machine where theVM is currently located. Each VM can also have its own distinct virtual MAC address.The VMM maintains a mapping of the virtual IP and MAC addresses to their correspondingVMs. In general, a migrating VM includes all the protocol states and carries its IP address withit.

Source and destination machines of a VM migration are typically connected to asingle switched LAN, an unsolicited ARP reply from the migrating host is provided advertisingthat the IP has moved to a new location.
 This solves the open network connection problem by reconfiguring all the peers tosend future packets to a new location. Although a few packets that have already beentransmitted might be lost, there are no other problems with this mechanism.Alternatively, on a switched network, the migrating OS can keep its original EthernetMAC address and rely on the network switch to detect its move to a new port.

Live migration means moving a VM from one physical node to another while keepingits OS environment and applications unbroken.
 This capability is being increasingly utilized in today’s enterprise environments toprovide efficient online system maintenance, reconfiguration, load balancing, andproactive fault tolerance. It provides desirable features to satisfy requirements forcomputing resources in modern computing systems, including server consolidation,performance isolation, and ease of management.

Cluster environment where a network-accessible storage system, such as storagearea network (SAN) or network attached storage (NAS), is employed. Only memory and CPUstatus needs to be transferred from the source node to the target node.Live migration techniques uses two approaches
 Precopy approach, which first transfers all memory pages, and then only copiesmodified pages during the last round iteratively. The VM service downtime is expectedto be minimal by using iterative copy operations.

 Performance degradation will occur because the migration daemoncontinually consumes network bandwidth to transfer dirty pages in eachround. An adaptive rate limiting approach is employed to mitigate this issue.

Introduction to Grid Computing

Page 118 Under Regulation 2013 Anna University

 Precopy approach are caused by the large amount of transferred data duringthe whole migration process. A checkpointing/recovery and trace/replayapproach (CR/TRMotion) is proposed to provide fast VM migration.
 Post copy approach, all memory pages are transferred only once during the wholemigration process and the baseline total migration time is reduced.

 The downtime is much higher than that of precopy due to the latency offetching pages from the source node before the VM can be resumed on thetarget. With the advent of multicore or many-core machines, abundant CPUresources are available. Even if several VMs reside on a same multicoremachine, CPU resources are still rich because physical CPUs are frequentlyamenable to multiplexing. We can exploit these copious CPU resources tocompress page frames and the amount of transferred data can be significantlyreduced. Memory compression algorithms typically have little memoryoverhead. Decompression is simple and very fast and requires no memory fordecompression.
3.7.3.4 Live Migration of VM Using XenXen hypervisor allows multiple commodity OSes to share x86 hardware in a safe andorderly fashion. The following example explains how to perform live migration of a VMbetween two Xen-enabled host machines. Domain 0 (or Dom0) performs tasks to create,terminate, or migrate to another host. Xen uses a send/recv model to transfer states acrossVMs.
Live Migration of VMs between Two Xen-Enabled HostsXen supports live migration. It is a useful feature and natural extension tovirtualization platforms that allows for the transfer of a VM from one physical machine toanother with little or no downtime of the services hosted by the VM. Live migration transfersthe working state and memory of a VM across a network when it is running. Xen also supportsVM migration by using a mechanism called Remote Direct Memory Access (RDMA).RDMA speeds up VM migration by avoiding TCP/IP stack processing overhead. RDMAimplements a different transfer protocol whose origin and destination VM buffers must beregistered before any transfer operations occur, reducing it to a “onesided” interface. Datacommunication over RDMA does not need to involve the CPU, caches, or context switches. Thisallows migration to be carried out with minimal impact on guest operating systems and hostedapplications. Figure 3.26 shows the compression scheme for VM migration.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 119

Figure 3.26 Live migration of VM from the Dom0 domain to a Xen-enabled target host.Migration daemons running in the management VMs are responsible for performingmigration. Shadow page tables in the VMM layer trace modifications to the memory page inmigrated VMs during the precopy phase. Corresponding flags are set in a dirty bitmap. At thestart of each precopy round, the bitmap is sent to the migration daemon. Then, the bitmap iscleared and the shadow page tables are destroyed and re-created in the next round. Thesystem resides in Xen’s management VM. Memory pages denoted by bitmap are extracted andcompressed before they are sent to the destination. The compressed data is thendecompressed on the target.
3.7.4 Dynamic Deployment of Virtual ClustersTable 3.6 summarizes four virtual cluster research projects. The Cellular Disco atStanford is a virtual cluster built in a shared-memory multiprocessor system. The INRIAvirtual cluster was built to test parallel algorithm performance. The COD and VIOLIN clustersare studied in forthcoming examples.

Table 3.6 Experimental Results on Four Research Virtual Clusters

Project Name Design Objectives
Reported Results and

ReferencesCluster-on-Demand atDuke Univ. Dynamic resource allocation with avirtual cluster management system Sharing of VMs by multiple virtualclusters using Sun GridEngineCellular Disco at StanfordUniv. To deploy a virtual cluster on ashared-memory multiprocessor VMs deployed on multipleprocessors under a VMM calledCellular DiscoVIOLIN at Purdue Univ Multiple VM clustering to prove theadvantage of dynamic adaptation Reduce execution time ofapplications running VIOLIN withadaptationGRAAL Project at INRIAin France Performance of parallel algorithms inXen-enabled virtual clusters 75% of max. performanceachieved with 30% resourceslacks over VM clusters
Example: The Cluster-on-Demand (COD) Project at Duke University

Introduction to Grid Computing

Page 120 Under Regulation 2013 Anna University

Developed by researchers at Duke University, the COD (Cluster-on-Demand) project isa virtual cluster management system for dynamic allocation of servers from a computing poolto multiple virtual clusters. The idea is illustrated by the prototype implementation of the CODshown in Figure 3.27. The COD partitions a physical cluster into multiple virtual clusters(vClusters). vCluster owners specify the operating systems and software for their clustersthrough an XML-RPC interface. The vClusters run a batch schedule from Sun’s GridEngine on aweb server cluster. The COD system can respond to load changes in restructuring the virtualclusters dynamically.

Figure 3.27 COD partitioning a physical cluster into multiple virtual clusters

Example: The VIOLIN Project at Purdue UniversityThe Purdue VIOLIN Project applies live VM migration to reconfigure a virtual clusterenvironment. Its purpose is to achieve better resource utilization in executing multiple clusterjobs on multiple cluster domains. The project leverages the maturity of VM migration andenvironment adaptation technology. The approach is to enable mutually isolated virtualenvironments for executing parallel applications on top of a shared physical infrastructureconsisting of multiple domains. Figure 3.28 illustrates the idea with five concurrent virtualenvironments, labeled as VIOLIN 1–5, sharing two physical clusters.The squares of various shadings represent the VMs deployed in the physical servernodes. The major contribution by the Purdue group is to achieve autonomic adaptation of thevirtual computation environments as active, integrated entities. A virtual executionenvironment is able to relocate itself across the infrastructure, and can scale its share ofinfrastructural resources. The adaptation is transparent to both users of virtual environmentsand administrations of infrastructures. The adaptation overhead is maintained at 20 sec out of1,200 sec in solving a large NEMO3D problem of 1 million particles.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 121

Figure 3.28 VIOLIN adaptation scenarios of five virtual environments sharing two
hosted clusters. Note that there are more idle squares (blank nodes) before and after
the adaptation.

3.8 Virtualization for Data-Center AutomationData centers have grown rapidly in recent years, and all major IT companies arepouring their resources into building new data centers. In addition, Google, Yahoo!, Amazon,Microsoft, HP, Apple, and IBM are all in the game. All these companies have invested billions ofdollars in datacenter construction and automation. Data-center automation means that hugevolumes of hardware, software, and database resources in these data centers can be allocateddynamically to millions of Internet users simultaneously, with guaranteed QoS and cost-effectiveness.This automation process is triggered by the growth of virtualization products andcloud computing services. The latest virtualization development highlights high availability(HA), backup services, workload balancing, and further increases in client bases. IDC projectedthat automation, service orientation, policy-based, and variable costs in the virtualizationmarket.
3.8.1 Server Consolidation in Data CentersIn data centers, a large number of heterogeneous workloads can run on servers atvarious times. These heterogeneous workloads can be roughly divided into two categories:

 Chatty workloads - these may burst at some point and return to a silent state at someother point. A web video service is an example of this, whereby a lot of people use it atnight and few people use it during the day.

Introduction to Grid Computing

Page 122 Under Regulation 2013 Anna University

 Noninteractive workloads- these workloads do not require people’s efforts to makeprogress after they are submitted. High-performance computing is a typical example ofthis. At various stages, the requirements for resources of these workloads aredramatically different.However, to guarantee that a workload will always be able to cope with all demandlevels, the workload is statically allocated enough resources so that peak demand is satisfied.Therefore, it is common that most servers in data centers are underutilized. A large amountof hardware, space, power, and management cost of these servers is wasted.
 Server consolidation is an approach to improve the low utility ratio of hardwareresources by reducing the number of physical servers. Among several serverconsolidation techniques such as centralized and physical consolidation, virtualization-based server consolidation is the most powerful. Data centers need to optimize theirresource management. Yet these techniques are performed with the granularity of afull server machine, which makes resource management far from well optimized.Server virtualization enables smaller resource allocation than a physical machineThe use of VMs increases resource management complexity. This causes a challenge interms of how to improve resource utilization as well as guarantee QoS in data centers. Indetail, server virtualization has the following side effects:
 Consolidation enhances hardware utilization. Many underutilized servers areconsolidated into fewer servers to enhance resource utilization. Consolidation alsofacilitates backup services and disaster recovery.
 This approach enables more agile provisioning and deployment of resources. In avirtual environment, the images of the guest OSes and their applications are readilycloned and reused.
 The total cost of ownership is reduced. In this sense, server virtualization causesdeferred purchases of new servers, a smaller data-center footprint, lower maintenancecosts, and lower power, cooling, and cabling requirements.
 This approach improves availability and business continuity. The crash of a guest OShas no effect on the host OS or any other guest OS. It becomes easier to transfer a VMfrom one server to another, because virtual servers are unaware of the underlyinghardware.To automate data-center operations, one must consider
 resource scheduling
 architectural support
 power management
 automatic or autonomic resource management
 performance of analytical models, and so on.In virtualized data centers, an efficient, on-demand, fine-grained scheduler is one of the keyfactors to improve resource utilization. Scheduling and reallocations can be done in a widerange of levels in a set of data centers.
 The levels match at least at the VM level, server level, and data-center level. Ideally,scheduling and resource reallocations should be done at all levels. However, due to thecomplexity of this, current techniques only focus on a single level or, at most, twolevels.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 123

Dynamic CPU allocation is based on VM utilization and application-level QoS metrics.
 One method considers both CPU and memory flowing as well as automaticallyadjusting resource overhead based on varying workloads in hosted services.
 Another scheme uses a two-level resource management system to handle thecomplexity involved. A local controller at the VM level and a global controller at theserver level are designed. They implement autonomic resource allocation via theinteraction of the local and global controllers. Multicore and virtualization are twocutting techniques that can enhance each other.

3.8.2 Virtual Storage ManagementThe term “storage virtualization” was widely used before the renaissance of systemvirtualization. Storage virtualization was largely used to describe the aggregation andrepartitioning of disks at very coarse time scales for use by physical machines. Generally, thedata stored can be classified into two categories: VM images and application data. The VMimages are special to the virtual environment, while application data includes all other datawhich is the same as the data in traditional OS environments.
Encapsulation and isolation - Traditional operating systems and applications running onthem can be encapsulated in VMs. Only one operating system runs in a virtualization whilemany applications run in the operating system. System virtualization allows multiple VMs torun on a physical machine and the VMs are completely isolated. To achieve encapsulation andisolation, both the system software and the hardware platform, such as CPUs and chipsets, arerapidly updated.
Storage is lagging - The storage systems become the main bottleneck of VM deployment. Invirtualization environments, a virtualization layer is inserted between the hardware andtraditional operating systems or a traditional operating system is modified to supportvirtualization. This procedure complicates storage operations.
VMs are not nimble - Hence, operations such as remapping volumes across hosts and checkpointing disks are frequently clumsy and esoteric, and sometimes simply unavailable. Sincetraditional storage management techniques do not consider the features of storage invirtualization environments, Parallax designs a novel architecture in which storage featuresthat have traditionally been implemented directly on high-end storage arrays and switchersare relocated into a federation of storage VMs. These storage VMs share the same physicalhosts as the VMs that they serve.

Introduction to Grid Computing

Page 124 Under Regulation 2013 Anna University

Example: Parallax Providing Virtual Disks to Client VMs from a Large Com m on Share d
Physical Disk

Figure 3.29 Parallax is a set of per-host storage appliances that share access to a
common block device and presents virtual disks to client VMs.Parallax itself runs as a user-level application in the storage appliance VM. It providesvirtual disk images (VDIs) to VMs. A VDI is a single-writer virtual disk which may be accessedin a location-transparent manner from any of the physical hosts in the Parallax cluster. TheVDIs are the core abstraction provided by Parallax. Parallax uses Xen’s block tap driver tohandle block requests and it is implemented as a tapdisk library. This library acts as a singleblock virtualization service for all client VMs on the same physical host. In the Parallax system,it is the storage appliance VM that connects the physical hardware device for blocks andnetwork access. As shown in Figure 3.29, physical device drivers are included in the storageappliance VM. This implementation enables a storage administrator to live-upgrade the blockdevice drivers in an active cluster.
3.8.3 Cloud OS for Virtualized Data CentersData centers must be virtualized to serve as cloud providers. Table 3.7 summarizesfour virtual infrastructure (VI) managers and OSes. These VI managers and OSes are speciallytailored for virtualizing data centers which often own a large number of servers in clusters.Nimbus, Eucalyptus, and OpenNebula are all open source software available to the generalpublic. Only vSphere 4 is a proprietary OS for cloud resource virtualization and managementover data centers.These VI managers are used to create VMs and aggregate them into virtual clusters aselastic resources. Nimbus and Eucalyptus support essentially virtual networks. OpenNebulahas additional features to provision dynamic resources and make advance reservations. Allthree public VI managers apply Xen and KVM for virtualization. vSphere 4 uses thehypervisors ESX and ESXi from VMware. Only vSphere 4 supports virtual storage in addition tovirtual networking and data protection. We will study Eucalyptus and vSphere 4 in the nexttwo examples.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 125

Table 3.7 VI Managers and Operating Systems for Virtualizing Data Centers

Example : Eucalyptus for Virtual Networking of Private CloudEucalyptus is an open source software system (Figure 3.30) intended mainly forsupporting Infrastructure as a Service (IaaS) clouds. The system primarily supports virtualnetworking and the management of VMs; virtual storage is not supported. Its purpose is tobuild private clouds that can interact with end users through Ethernet or the Internet. Thesystem also supports interaction with other private clouds or public clouds over the Internet.The system is short on security and other desired features for general purpose grid or cloudapplications.The three resource managers in Figure 3.30 are specified below:
 Instance Manager controls the execution, inspection, and terminating of VM instanceson the host where it runs.
 Group Manager gathers information about and schedules VM execution on specificinstance managers, as well as manages virtual instance network.
 Cloud Manager is the entry-point into the cloud for users and administrators. It queriesnode managers for information about resources, makes scheduling decisions, andimplements them by making requests to group managers.

Introduction to Grid Computing

Page 126 Under Regulation 2013 Anna University

Figure 3.30 Eucalyptus for building private clouds by establishing virtual networks over
the VMs linking through Ethernet and the Internet

Example: VMware vSphere4 as a Commercial Cloud OSThe vSphere 4 offers a hardware and software ecosystem developed by VMware andreleased in April 2009. vSphere extends earlier virtualization software products by VMware,namely the VMware Workstation, ESX for server virtualization, and Virtual Infrastructure forserver clusters. Figure 3.31 shows vSphere’s overall architecture. The system interacts withuser applications via an interface layer, called vCenter. vSphere is primarily intended to offervirtualization support and resource management of datacenter resources in building privateclouds. VMware claims the system is the first cloud OS that supports availability, security, andscalability in providing cloud computing services.

Figure 3.31 vSphere/4, a cloud operating system that manages compute, storage, and
network resources over virtualized data centers.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 127

The vSphere 4 is built with two functional software suites: infrastructure services andapplication services. It also has three component packages intended mainly for virtualizationpurposes: vCompute is supported by ESX, ESXi, and DRS virtualization libraries from VMware;vStorage is supported by VMS and thin provisioning libraries; and vNetwork offers distributedswitching and networking functions. These packages interact with the hardware servers,disks, and networks in the data center. These infrastructure functions also communicate withother external clouds.The application services are also divided into three groups: availability, security, andscalability. Availability support includes VMotion, Storage VMotion, HA, Fault Tolerance, andData Recovery from VMware. The security package supports vShield Zones and VMsafe. Thescalability package was built with DRS and Hot Add. Interested readers should refer to thevSphere 4 web site for more details regarding these component software functions. To fullyunderstand the use of vSphere 4, users must also learn how to use the vCenter interfaces inorder to link with existing applications or to develop new applications.
3.8.4 Trust Management in Virtualized Data CentersA VM entirely encapsulates the state of the guest operating system running inside it.Encapsulated machine state can be copied and shared over the network and removed like anormal file, which proposes a challenge to VM security. In general, a VMM can provide secureisolation and a VM accesses hardware resources through the control of the VMM, so the VMMis the base of the security of a virtual system. Normally, one VM is taken as a management VMto have some privileges such as creating, suspending, resuming, or deleting a VM.Once a hacker successfully enters the VMM or management VM, the whole system is in danger.A subtler problem arises in protocols that rely on the “freshness” of their random numbersource for generating session keys. Considering a VM, rolling back to a point after a randomnumber has been chosen, but before it has been used, resumes execution; the random number,which must be “fresh” for security purposes, is reused. With a stream cipher, two differentplaintexts could be encrypted under the same key stream, which could, in turn, expose bothplaintexts if the plaintexts have sufficient redundancy. Non cryptographic protocols that relyon freshness are also at risk. For example, the reuse of TCP initial sequence numbers can raiseTCP hijacking attacks.
3.8.4.1 VM-Based Intrusion DetectionIntrusions are unauthorized access to a certain computer from local or network usersand intrusion detection is used to recognize the unauthorized access. An intrusion detectionsystem (IDS) is built on operating systems, and is based on the characteristics of intrusionactions. Typical IDS can be classified as host-based IDS (HIDS) or network-based IDS(NIDS), depending on the data source.A HIDS can be implemented on the monitored system. When the monitored system isattacked by hackers, the HIDS also faces the risk of being attacked. A NIDS is based on the flowof network traffic which can’t detect fake actions.Virtualization-based intrusion detection can isolate guest VMs on the same hardwareplatform. Even some VMs can be invaded successfully; they never influence other VMs, whichis similar to the way in which a NIDS operates. Furthermore, a VMM monitors and audits

Introduction to Grid Computing

Page 128 Under Regulation 2013 Anna University

access requests for hardware and system software. This can avoid fake actions and possess themerit of a HIDS. There are two different methods for implementing a VM-based IDS: Either theIDS is an independent process in each VM or a high-privileged VM on the VMM; or the IDS isintegrated into the VMM and has the same privilege to access the hardware as well as theVMM. Figure 3.32 illustrates the concept.

Figure 3.32 The architecture of livewire for intrusion detection using a dedicated VMThe VM-based IDS contains a policy engine and a policy module.
 The policy framework can monitor events in different guest VMs by operating systeminterface library and PTrace indicates trace to secure policy of monitored host.
 It’s difficult to predict and prevent all intrusions without delay. Therefore, an analysisof the intrusion action is extremely important after an intrusion occurs.The IDS log service is based on the operating system kernel. Thus, when an operatingsystem is invaded by attackers, the log service should be unaffected.Besides IDS, honeypots and honeynets are also prevalent in intrusion detection. Theyattract and provide a fake system view to attackers in order to protect the real system. Inaddition, the attack action can be analyzed, and a secure IDS can be built.A honeypot is a purposely defective system that simulates an operating system tocheat and monitor the actions of an attacker. A honeypot can be divided into physical andvirtual forms. A guest operating system and the applications running on it constitute a VM. Thehost operating system and VMM must be guaranteed to prevent attacks from the VM in avirtual honeypot.

Example: EMC Establishment of Trusted Zones for Protection of Virtual Clusters
Provided to Multiple TenantsEMC and VMware have joined forces in building security middleware for trustmanagement in distributed systems and private clouds. The concept of trusted zones wasestablished as part of the virtual infrastructure. Figure 3.33 illustrates the concept of creatingtrusted zones for virtual clusters (multiple applications and OSes for each tenant) provisionedin separate virtual environments. The physical infrastructure is shown at the bottom, andmarked as a cloud provider. The virtual clusters or infrastructures are shown in the upperboxes for two tenants. The public cloud is associated with the global user communities at thetop.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 129

Figure 3.33 Techniques for establishing trusted zones for virtual cluster insulation and
VM isolationThe arrowed boxes on the left and the brief description between the arrows and thezoning boxes are security functions and actions taken at the four levels from the users to theproviders. The small circles between the four boxes refer to interactions between users andproviders and among the users themselves. The arrowed boxes on the right are thosefunctions and actions applied between the tenant environments, the provider, and the globalcommunities.Almost all available countermeasures, such as anti-virus, worm containment, intrusiondetection, encryption and decryption mechanisms, are applied here to insulate the trustedzones and isolate the VMs for private tenants. The main innovation here is to establish thetrust zones among the virtual clusters. The end result is to enable an end-to-end view ofsecurity events and compliance across the virtual clusters dedicated to different tenants.
4.1 Open Source Grid Middleware PackagesMany software, middleware, and programming environments have beendeveloped for grid computing over past 15 years. Below we assess their relative strengthand limitations based on recently reported applications. We first introduce some gridstandards and popular APIs. Then we present the desired software support and

Introduction to Grid Computing

Page 130 Under Regulation 2013 Anna University

middleware developed for grid computing. Table 7.6 summarizes four grid middlewarepackages.
Table 4.1 Grid Software Support and Middleware Packages

Package Brief DescriptionBOINC Berkeley Open Infrastructure for Network ComputingUNICORE Middleware developed by the German grid computing communityGlobus (GT4) A middleware library jointly developed by Argonne National Lab., Univ. ofChicago, and USC Information Science Institute, funded by DARPA, NSF,and NIH.CGSP inChinaGrid The CGSP (ChinaGrid Support Platform) is a middleware librarydeveloped by 20 top universities in China as part of the ChinaGridProjectCondor-G Originally developed at the Univ. of Wisconsin for general distributedcomputing, and later extended to Condor-G for grid job managementSun GridEngine (SGE) Developed by Sun Microsystems for business grid applications. Appliedtoprivate grids and local clusters within enterprises or campuses
4.1.1 Grid Standards and APIsTwo well-formed standards

 The Open Grid Forum (formally Global Grid Forum) and
 Object Management Groupsome grid standards including
 GLUE for resource representation
 SAGA (Simple API for Grid Applications)
 GSI (Grid Security Infrastructure)
 OGSI (Open Grid Service Infrastructure)
 WSRE (Web Service Resource Framework)The grid standards have guided the development of several middleware librariesand API tools for grid computing.Research grids tested include the EGEE, France Grilles, D-Grid (German), CNGrid(China), TeraGrid (USA), etc. Production grids built with the standards include the EGEE,INFN grid (Italian), NorduGrid, Sun Grid, Techila, and Xgrid.

4.1.2 Software Support and Middleware
 Grid middleware is specifically designed a layer between hardware and the software.
 The middleware products enable the sharing of heterogeneous resources andmanaging virtual organizations created around the grid. Middleware glues theallocated resources with specific user applications.
 Popular grid middleware tools include the

o Globus Toolkits (USA), gLight,
o UNICORE (German),

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 131

o BOINC (Berkeley),
o CGSP (China),
o Condor-G,
o Sun Grid Engine, etc.The following first example introduces the matchmaking capability of Condor andCondor-G developed at University of Wisconsin. Example second discusses the features ofSun’s Grid Engine developed at Sun Microsystems for business grid computing.

Example: Features in Condor Kernel and Condor-G for Grid ComputingCondor is a software tool for high-throughput distributed batch computing.
 It was designed to explore the idle cycles of a network of distributed computers.
 The major components of Condor are the user agent, resources, and matchmaker, asshown in Figure 4.1.
 The ClassAds (classified advertisements) language was exploited in Condor to expressuser requests against available resources in a distributed system.
 Agents and resources advertise their status and requirements in ClassAds to a centralmatchmaker.
 The matchmaker scans the ClassAds and creates pairs of (resources, agents) thatmatch each other’s requirements.

Figure 4.1 Major functional components in a Condor system (Condor-specific names are
in parentheses)Subsequently, the matched agent negotiates with the available resource to execute thejob.Two problem solvers are provided in Condor:

 the master-worker
 the DAG managerFor specific jobs, Condor records checkpoints and subsequently resumes programexecution from the checkpoints. When running a job on remote machines without a shared filesystem, Condor accesses the local execution environment via remote system calls. Condor-Gwas designed to match the GRAM protocol for coupling jobs with resources in the Globus

Introduction to Grid Computing

Page 132 Under Regulation 2013 Anna University

Project. Condor-G adds durability and two-phase commitment to prevent the loss andrepetition of jobs in GRAM. However, Condor-G does not support all the features in GRAM.
Example: The Sun Grid Engine (SGE) Middleware PackageSGE was developed by Sun Microsystems in response to increasing demands ofbusiness grid applications. SGE features are applied to private grids and local clusters withinan enterprise or campus for intranet-based cluster or grid applications. The system supportsbatch processing with dynamic allocation of grid resources. Fault tolerance and failovercapability are implemented. Users can specify resources independent of submission locations.Job status and resource utilization can be monitored periodically.Sun offers free and enterprise editions of the SGE package. The system offerscentralized management of all resources allocated to individual jobs. This was meant toenhance efficiency and performance. Suspend and resume tools are provided to allow users tohalt a job and restart it later without losing the work already completed. The SGE workflowfollows the following sequence of events:

 Accepts the jobs from users
 Places jobs in a computer area until execution
 Sends the jobs from the holding area to a host where they can be executed
 Manages the jobs during execution
 Logs a record of their execution when they are finishedThe SGE system uses reserved ports, Kerberos, DCE, SSL, and authentication in classified hoststo enforce security at different trust levels and resource access restrictions.

4.2 The Globus Toolkit Architecture (GT4)The Globus Toolkit, started in 1995 with funding from DARPA, is an open middlewarelibrary for the grid computing communities. These open source software libraries supportmany operational grids and their applications on an international basis. The toolkit addressescommon problems and issues related to grid resource discovery, management,communication, security, fault detection, and portability. The software itself provides a varietyof components and capabilities. The library includes a rich set of service implementations.The implemented software supports grid infrastructure management, provides toolsfor building new web services in Java, C, and Python, builds a powerful standard-basedsecurity infrastructure and client APIs (in different languages), and offers comprehensivecommand-line programs for accessing various grid services. The Globus Toolkit was initiallymotivated by a desire to remove obstacles that prevent seamless collaboration, and thussharing of resources and services, in scientific and engineering applications. The sharedresources can be computers, storage, data, services, networks, science instruments (e.g.,sensors), and so on. The Globus library version GT4, is conceptually shown in Figure 4.2.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 133

Figure 4.2 Globus Tookit GT4 supports distributed and cluster computing services.

4.2.1 The GT4 LibraryGT4 offers the middle-level core services in grid applications.
 The high-level services and tools, such as MPI, Condor-G, and Nirod/G, are developedby third parties for general-purpose distributed computing applications.
 The local services, such as LSF, TCP, Linux, and Condor, are at the bottom level andare fundamental tools supplied by other developers.
 Table 4.2 summarizes GT4’s core grid services by module name.
 Nexus is used for collective communications and HBM for heartbeat monitoring ofresource nodes. GridFTP is for speeding up inter node file transfers. The module GASSis used for global access of secondary storage.

Table 4.2 Functional Modules in Globus GT4 Library

Service Functionality Module
Name

Functional DescriptionGlobal Resource AllocationManager GRAM Grid Resource Access and Management (HTTP-based)Communication Nexus Unicast and multicast communicationGrid SecurityInfrastructure GSI Authentication and related security servicesMonitory and DiscoveryService MDS Distributed access to structure and state informationHealth and Status HBM Heartbeat monitoring of system componentsGlobal Access ofSecondary Storage GASS Grid access of data in remote secondary storageGrid File Transfer GridFTP Inter-node fast file transfer

Introduction to Grid Computing

Page 134 Under Regulation 2013 Anna University

4.2.2 Globus Job WorkflowFigure 4.3 shows the typical job workflow when using the Globus tools. A typical jobexecution sequence proceeds as follows:
 The user delegates his credentials to a delegation service.
 The user submits a job request to GRAM with the delegation identifier as a parameter.

o GRAM parses the request, retrieves the user proxy certificate from the delegationservice, and then acts on behalf of the user.
o GRAM sends a transfer request to the RFT (Reliable File Transfer), which appliesGridFTP to bring in the necessary files.
o GRAM invokes a local scheduler via a GRAM adapter and the SEG (Scheduler EventGenerator) initiates a set of user jobs.

 The local scheduler reports the job state to the SEG. Once the job is complete, GRAMuses RFT and GridFTP to stage out the resultant files.
 The grid monitors the progress of these operations and sends the user a notificationwhen they succeed, fail, or are delayed.

Figure 4.3 Globus job workflow among interactive functional modules

4.2.3 Client-Globus InteractionsGT4 service programs are designed to support user applications as illustrated inFigure 4.4.
 There are strong interactions between provider programs and user code.
 GT4 makes heavy use of industry standard web service protocols and mechanisms inservice description, discovery, access, authentication, authorization, and the like. GT4makes extensive use of Java, C, and Python to write user code.
 Web service mechanisms define specific interfaces for grid computing. Web servicesprovide flexible, extensible, and widely adopted XML-based interfaces.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 135

Figure 4.4 Client and GT4 server interactions; vertical boxes correspond to service
programs and horizontal boxes represent the user codes.

 GT4 provides a set of infrastructure services for accessing, monitoring, managing, andcontrolling access to infrastructure elements.
 GT4 implements standards to facilitate construction of operable and reusable usercode.
 Developers can use these services and libraries to build simple and complex systemsquickly.
 A high-security subsystem addresses message protection, authentication, delegation,and authorization. Comprising both a set of service implementations (server programsat the bottom of Figure 4.5) and associated client libraries at the top.
 GT4 provides both web services and non-WS applications. The horizontal boxes in theclient domain denote custom applications and/or third-party tools that access GT4services.
 The toolkit programs provide a set of useful infrastructure services.Three containers are used to host user-developed services written in Java, Python, andC, respectively. These containers provide implementations of security, management,discovery, state management, and other mechanisms frequently required when buildingservices. They extend open source service hosting environments with support for a range ofuseful web service specifications, including WSRF, WS-Notification, and WS-Security.A set of client libraries allow client programs in Java, C, and Python to invokeoperations on both GT4 and user-developed services. The use of uniform abstractions andmechanisms means clients can interact with different services in similar ways, whichfacilitates construction of complex, interoperable systems and encourages code reuse.

Introduction to Grid Computing

Page 136 Under Regulation 2013 Anna University

Figure 4.5 Globus container serving as a runtime environment for implementing
web services in a grid platform.

4.4.3 Containers and Resources/Data ManagementGRAM supports dynamic job execution with coordinated file staging. MDS is used formonitoring and discovery of available grid resources in a grid execution environment.
4.4.3.1 Resource Management Using GRAMThe GRAM module supports

 Web services for initiating, monitoring, and managing execution of computational jobson remote computers in an open grid.GRAM is built atop various local resource allocation services.
 A standardized GRAM interface enables access to a variety of local resourcemanagement tools, such as the Load Sharing Facility the Network QueuingEnvironment, IBM’s LoadLeveler, and Condor.
 This interface allows a client to express the resource type and quantity, data to bestaged to and from the execution site, executable code and its arguments, securitycredentials to be used, and job persistence requirements.Other operations enable clients to monitor the status of both allocated resources andrunning tasks and notify users about their status, as well as guide job execution on the grid.The heart of GRAM contains a set of web services designed to run the Globus WebServices Resource Framework (WSRF) core hosting environment.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 137

 Each submitted job is exposed with a distinct resource qualifying the requestedservice.
 The service provides an interface to monitor the status of the job or to terminate thejob.
 Each compute element is accessed through a local scheduler.
 The service provides an interface to create the managed job resources to perform a jobin that local scheduler.

4.4.3.2 Globus Container: A Runtime EnvironmentThe Globus Container provides a basic runtime environment for hosting the webservices needed to execute grid jobs.
 Figure 4.5(a) shows the container concept. The container is built with heavy use ofSOAP engines.
 The main SOAP functions performed include the transport of incoming job requestsand corresponding responses.
 It is also common to partition the hosting environment logic for transporting the SOAPmessage via an HTTP engine or web server.Figure 4.5(b) summarizes the capabilities of the containers.
 All WS containers implement the SOAP commands over the HTTP engine as a messagetransport protocol.
 Both transport-level and message-level security is enforced in all communications. TheWS-addressing, WSRF, and WSNotification functions are implemented.
 The container supports logging using the Jakarta logging API.
 The container defines WSRF WS-Resources for grid services deployed in the container.Thus, any GT4 container can host many services to multiple jobs simultaneously.
 The container supports custom web services and host services whose client interfacesmake use of WSRF and related mechanisms.
 The container also hosts advanced services provided by GT4, such as GRAM, MDS, andRFT.
 The application clients use the Globus container registry interfaces to determine whichservices are hosted in a particular container. The container administration interfacesare used to perform routine management functions.

4.4.3.3 Data Management Using GT4Grid applications often need to provide access to and/or integrate large quantities ofdata at multiple sites. The GT4 tools can be used individually or in conjunction with other toolsto develop interesting solutions to efficient data access. The following list briefly introducesthese GT4 tools:1. GridFTP
 It supports reliable, secure, and fast memory-to-memory and disk-to-disk datamovement over high-bandwidth WANs.
 GridFTP adds additional features such as parallel data transfer, third-party datatransfer, and striped data transfer

Introduction to Grid Computing

Page 138 Under Regulation 2013 Anna University

 GridFTP benefits from using the strong Globus Security Infrastructure for securingdata channels with authentication and reusability.
 It has been reported that the grid has achieved 27 Gbit/second end-to-end transferspeeds over some WANs.2. RFT provides reliable management of multiple GridFTP transfers. It has been used toorchestrate the transfer of millions of files among many sites simultaneously.3. RLS (Replica Location Service) is a scalable system for maintaining and providingaccess to information about the location of replicated files and data sets.4. OGSA-DAI (Globus Data Access and Integration) tools were developed by the UK e-Science program and provide access to relational and XML databases.

4.4.3.4 The MDS ServicesMonitoring and discovery are two vital functions in any distributed system.
 Both tasks require the ability to collect information from multiple distributedinformation sources.
 GT4 provides monitoring and discovery support at a fundamental level.
 Figure 4.6 shows the Globus MDS infrastructure.
 By implementing WSRF and WS-Notification specifications, GT4 enables theassociation of XML-based resource properties with network entities.
 Multiple containers are built to carry out MDS indexing, GridFTP, and other functionsneeded to conduct monitoring and discovery of available resources.
 Grid services can be registered with distributed containers.GT4 provides two aggregator services that collect data from any information source,whether XML-based or otherwise. In addition, GT4 provides a range of browser-basedinterfaces, command-line tools, and web service interfaces that allow users to query andaccess the collected information. In particular, the WebMDS service is configured via XSLTtransformations to create specialized views of the index data. These mechanisms provide apowerful framework for monitoring diverse collections of distributed components.

Figure 4.6 GT4 system monitoring and resource discovery infrastructure.

4.5 Introducing HadoopHadoop is the Apache Software Foundation top-level project that holds the variousHadoop subprojects that graduated from the Apache Incubator. The Hadoop project provides

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 139

and supports the development of open source software that supplies a framework for thedevelopment of highly scalable distributed computing applications. The Hadoop frameworkhandles the processing details, leaving developers free to focus on application logic.The introduction on the Hadoop project states:The Apache Hadoop project develops open-source software for reliable, scalable,distributed computing, including:Hadoop Core, our flagship sub-project, provides a distributed filesystem (HDFS) andsupport for the MapReduce distributed computing metaphor.HBase builds on Hadoop Core to provide a scalable, distributed database.Pig is a high-level data-flow language and execution framework for parallelcomputation.It is built on top of Hadoop Core.ZooKeeper is a highly available and reliable coordination system. Distributedapplications use ZooKeeper to store and mediate updates for critical shared state.Hive is a data warehouse infrastructure built on Hadoop Core that provides datasummarization, adhoc querying and analysis of datasets.The Hadoop Core project provides the basic services for building a cloud computingenvironment with commodity hardware, and the APIs for developing software that will run onthat cloud. The two fundamental pieces of Hadoop Core are the MapReduce framework,
 the cloud computing environment,
 And he Hadoop Distributed File System (HDFS).The Hadoop Core MapReduce framework requires a shared file system.
 This shared file system does not need to be a system-level file system, as long as thereis a distributed file system plug-in available to the framework.While Hadoop Core provides HDFS, HDFS is not required.
 In addition to HDFS, Hadoop Core supports the Cloud- Store file system and AmazonSimple Storage Service (S3) file system.
 The Hadoop Core framework comes with plug-ins for HDFS, CloudStore, and S3.
 Users are also free to use any distributed file system that is visible as a system-mounted file system, such as Network File System (NFS), Global File System (GFS), orLustre.When HDFS is used as the shared file system, Hadoop is able to take advantage ofknowledge about which node hosts a physical copy of input data, and will attempt to schedulethe task that is to read that data, to run on that machine.

4.5.1 Hadoop Core MapReduceThe Hadoop Distributed File System (HDFS)MapReduce environment provides theuser with a sophisticated framework to manage the execution of map and reduce tasks acrossa cluster of machines. The user is required to tell the framework the following:
 The location(s) in the distributed file system of the job input
 The location(s) in the distributed file system for the job output
 The input format
 The output format
 The class containing the map function

Introduction to Grid Computing

Page 140 Under Regulation 2013 Anna University

 Optionally. the class containing the reduce function
 The JAR file(s) containing the map and reduce functions and any support classesIf a job does not need a reduce function, the user does not need to specify a reducerclass, and a reduce phase of the job will not be run. The framework will partition the input, andschedule and execute map tasks across the cluster. If requested, it will sort the results of themap task and execute the reduce task(s) with the map output. The final output will be movedto the output directory, and the job status will be reported to the user.MapReduce is oriented around key/value pairs.
 The framework will convert each record of input into a key/value pair, and each pairwill be input to the map function once.
 The map output is a set of key/value pairs nominally one pair that is the transformedinput pair, but it is perfectly acceptable to output multiple pairs. The map output pairsare grouped and sorted by key.
 The reduce function is called one time for each key, in sort sequence, with the key andthe set of values that share that key.
 The reduce method may output an arbitrary number of key/value pairs, which arewritten to the output files in the job output directory.
 If the reduce output keys are unchanged from the reduce input keys, the final outputwill be sorted.The framework provides two processes that handle the management of MapReducejobs:
 TaskTracker manages the execution of individual map and reduce tasks on a computenode in the cluster.
 JobTracker accepts job submissions, provides job monitoring and control, andmanages the distribution of tasks to the TaskTracker nodes.Generally, there is one JobTracker process per cluster and one or more TaskTrackerprocesses per node in the cluster. The JobTracker is a single point of failure, and theJobTracker will work around the failure of individual TaskTracker processes.

4.5.2 The Hadoop Distributed File SystemHDFS is a file system that is designed for use for MapReduce jobs that read input inlarge chunks of input, process it, and write potentially large chunks of output. For reliability,file data is simply mirrored to multiple storage nodes. This is referred to as replication in the
Hadoop community. As long as at least one replica of a data chunk is available, the consumerof that data will not know of storage server failures.HDFS services are provided by two processes:

 NameNode handles management of the file system metadata, and providesmanagementand control services.
 DataNode provides block storage and retrieval services.There will be one NameNode process in an HDFS file system, and this is a single pointof failure. Hadoop Core provides recovery and automatic backup of the NameNode, but nohot failover services. There will be multiple DataNode processes within the cluster, withtypically one DataNode process per storage node in a cluster.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 141

4.6 Introduction to Hadoop MapReduceHadoop supports the MapReduce model, which was introduced by Google as a methodof solving a class of petascale problems with large clusters of inexpensive machines. Themodel is based on two distinct steps for an application:
 Map: An initial ingestion and transformation step, in which individual input recordscan be processed in parallel.
 Reduce: an aggregation or summarization step, in which all associated records, mustbe processed together by a single entity.The core concept of MapReduce in Hadoop is that input may be split into logicalchunks, and each chunk may be initially processed independently, by a map task. The resultsof these individual processing chunks can be physically partitioned into distinct sets, whichare then sorted. Each sorted chunk is passed to a reduce task. Figure 4.7 illustrates how theMapReduce model works.

Figure 4.7 The MapReduce modelA map task may run on any compute node in the cluster, and multiple map tasks maybe running in parallel across the cluster.
 The map task is responsible for transforming the input records into key/value pairs.
 The output of all of the maps will be partitioned, and each partition will be sorted.
 There will be one partition for each reduce task. Each partition’s sorted keys and thevalues associated with the keys are then processed by the reduce task. There may bemultiple reduce tasks running in parallel on the cluster.

Introduction to Grid Computing

Page 142 Under Regulation 2013 Anna University

The application developer needs to provide only four items to the Hadoop framework:the class that will read the input records and transform them into one key/value pair perrecord, a map method, a reduce method, and a class that will transform the key/value pairsthat the reduce method outputs into output records.My first MapReduce application was a specialized web crawler. This crawler receivedas input large sets of media URLs that were to have their content fetched and processed. Themedia items were large, and fetching them had a significant cost in time and resources.The job had several steps:1. Ingest the URLs and their associated metadata.2. Normalize the URLs.3. Eliminate duplicate URLs.4. Filter the URLs against a set of exclusion and inclusion filters.5. Filter the URLs against a do not fetch list.6. Filter the URLs against a recently seen set.7. Fetch the URLs.8. Fingerprint the content items.9. Update the recently seen set.10. Prepare the work list for the next application.
4.6.1 The Parts of a Hadoop MapReduce JobThe user configures and submits a MapReduce job (or just job for short) to theframework, which will decompose the job into a set of map tasks, shuffles, a sort, and a set ofreduce tasks. The framework will then manage the distribution and execution of the tasks,collect the output, and report the status to the user.The job consists of the parts shown in Figure 4.8 and listed in Table 4.1.

Table 4.1. Parts of a MapReduce Job

Part Handled ByConfiguration of the job UserInput splitting and distribution HadoopframeworkStart of the individual map tasks with their input split HadoopframeworkMap function, called once for each input key/value pair UserShuffle, which partitions and sorts the per-map output HadoopframeworkSort, which merge sorts the shuffle output for each partition of all map outputs HadoopframeworkStart of the individual reduce tasks, with their input partition HadoopframeworkReduce function, which is called once for each unique input key, with all of theinput values that share that key UserCollection of the output and storage in the configured job output directory, in Nparts, where N is the number of reduce tasks HadoopframeworkThe user is responsible for handling the job setup, specifying the input location(s),specifying the input, and ensuring the input is in the expected format and location. Theframework is responsible for distributing the job among the TaskTracker nodes of the cluster;

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 143

running the map, shuffle, sort, and reduce phases; placing the output in the output directory;and informing the user of the job-completion status.

Figure 4.8 Parts of a MapReduce job

All the examples in this chapter are based on the file MapReduceIntro.java, shown incode 4.1. The job created by the code in MapReduceIntro.java will read all of its textual inputline by line, and sort the lines based on that portion of the line before the first tab character. Ifthere are no tab characters in the line, the sort will be based on the entire line. TheMapReduceIntro.java file is structured to provide a simple example of configuring and runninga MapReduce job.
Code 4.1. MapReduceIntro.javapackage com.apress.hadoopbook.examples.ch2;import java.io.IOException;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapred.FileInputFormat;import org.apache.hadoop.mapred.FileOutputFormat;import org.apache.hadoop.mapred.JobClient;import org.apache.hadoop.mapred.JobConf;import org.apache.hadoop.mapred.KeyValueTextInputFormat;import org.apache.hadoop.mapred.RunningJob;

Introduction to Grid Computing

Page 144 Under Regulation 2013 Anna University

import org.apache.hadoop.mapred.lib.IdentityMapper;import org.apache.hadoop.mapred.lib.IdentityReducer;import org.apache.log4j.Logger;/** A very simple MapReduce example that reads textual input where* each record is a single line, and sorts all of the input lines into* a single output file.** The records are parsed into Key and Value using the first TAB* character as a separator. If there is no TAB character the entire* line is the Key. *** @author Jason Venner**/public class MapReduceIntro {protected static Logger logger = Logger.getLogger(MapReduceIntro.class);/*** Configure and run the MapReduceIntro job.** @param args* Not used.*/public static void main(final String[] args) {try {/** Construct the job conf object that will be used to submit this job* to the Hadoop framework. ensure that the jar or directory that* contains MapReduceIntroConfig.class is made available to all of the* Tasktracker nodes that will run maps or reduces for this job.*/final JobConf conf = new JobConf(MapReduceIntro.class);/*** Take care of some housekeeping to ensure that this simple example* job will run*/MapReduceIntroConfig.exampleHouseKeeping(conf,MapReduceIntroConfig.getInputDirectory(),MapReduceIntroConfig.getOutputDirectory());/*** This section is the actual job configuration portion /*** Configure the inputDirectory and the type of input. In this case* we are stating that the input is text, and each record is a* single line, and the first TAB is the separator between the key* and the value of the record.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 145

*/conf.setInputFormat(KeyValueTextInputFormat.class);FileInputFormat.setInputPaths(conf,MapReduceIntroConfig.getInputDirectory());/** Inform the framework that the mapper class will be the* {@link IdentityMapper}. This class simply passes the* input Key Value pairs directly to its output, which in* our case will be the shuffle.*/conf.setMapperClass(IdentityMapper.class);/** Configure the output of the job to go to the output* directory. Inform the framework that the Output Key* and Value classes will be {@link Text} and the output* file format will {@link TextOutputFormat}. The* TextOutput format class joins produces a record of* output for each Key,Value pair, with the following* format. Formatter.format("%s\t%s%n", key.toString(),* value.toString());.** In addition indicate to the framework that there will be* 1 reduce. This results in all input keys being placed* into the same, single, partition, and the final output* being a single sorted file.*/FileOutputFormat.setOutputPath(conf,MapReduceIntroConfig.getOutputDirectory());conf.setOutputKeyClass(Text.class);conf.setOutputValueClass(Text.class);conf.setNumReduceTasks(1); /** Inform the framework that the reducer class will be the{@link* IdentityReducer}. This class simply writes an output record key,* value record for each value in the key, valueset it receives as* input. The value ordering is arbitrary.*/conf.setReducerClass(IdentityReducer.class);logger .info("Launching the job.");/** Send the job configuration to the framework and request that the* job be run.*/ final RunningJob job = JobClient.runJob(conf);logger.info("The job has completed.");if (!job.isSuccessful()) {logger.error("The job failed.");System.exit(1);} logger.info("The job completed successfully.");

Introduction to Grid Computing

Page 146 Under Regulation 2013 Anna University

System.exit(0);} catch (final IOException e) { logger.error("The job has failed due to an IO Exception", e);e.printStackTrace();}}}
4.6.1.1 Input SplittingFor the framework to be able to distribute pieces of the job to multiple machines, itneeds to fragment the input into individual pieces, which can in turn be provided as input tothe individual distributed tasks. Each fragment of input is called an input split. The defaultrules for how input splits are constructed from the actual input files are a combination ofconfiguration parameters and the capabilities of the class that actually reads the input records.An input split will normally be a contiguous group of records from a single input file,and in this case, there will be at least N input splits, where N is the number of input files. If thenumber of requested map tasks is larger than this number, or the individual files are largerthan the suggested fragment size, there may be multiple input splits constructed of each inputfile. The user has considerable control over the number of input splits. The number and size ofthe input splits strongly influence overall job performance.
4.6.1.2 A Simple Map Function: IdentityMapperThe Hadoop framework provides a very simple map function, called IdentityMapper. Itis used in jobs that only need to reduce the input, and not transform the raw input. We aregoing to examine the code of the IdentityMapper class, shown in code 4.2, in this section

Code 4.2. IdentityMapper.java/*** Licensed to the Apache Software Foundation (ASF) under one* or more contributor license agreements. See the NOTICE file* distributed with this work for additional information* regarding copyright ownership. The ASF licenses this file* to you under the Apache License, Version 2.0 (the* "License"); you may not use this file except in compliance* with the License. You may obtain a copy of the License at** http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.*/package org.apache.hadoop.mapred.lib;import java.io.IOException;import org.apache.hadoop.mapred.Mapper;

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 147

import org.apache.hadoop.mapred.OutputCollector;import org.apache.hadoop.mapred.Reporter;import org.apache.hadoop.mapred.MapReduceBase;/** Implements the identity function, mapping inputs directly to outputs. */public class IdentityMapper<K, V>extends MapReduceBase implements Mapper<K, V, K, V> {/** The identify function. Input key/value pair is written directly to* output.*/public void map(K key, V val,OutputCollector<K, V> output, Reporter reporter)throws IOException {output.collect(key, val);}}
The magic piece of code is the line output.collect(key, val), which passes a key/valuepair back to the framework for further processing. All map functions must implement theMapper interface, which guarantees that the map function will always be called with a key. Thekey is an instance of a WritableComparable object, a value that is an instance of a Writableobject, an output object, and a reporter.

4.6.1.3 A Simple Reduce Function: IdentityReducerThe Hadoop framework calls the reduce function one time for each unique key. Theframework provides the key and the set of values that share that key. The framework-suppliedclass IdentityReducer is a simple example that produces one output record for every value.Code 4.3 shows this class.Code4.3. IdentityReducer.java/*** Licensed to the Apache Software Foundation (ASF) under one* or more contributor license agreements. See the NOTICE file* distributed with this work for additional information* regarding copyright ownership. The ASF licenses this file* to you under the Apache License, Version 2.0 (the* "License"); you may not use this file except in compliance* with the License. You may obtain a copy of the License at** http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Introduction to Grid Computing

Page 148 Under Regulation 2013 Anna University

* See the License for the specific language governing permissions and* limitations under the License.*/package org.apache.hadoop.mapred.lib;import java.io.IOException;import java.util.Iterator;import org.apache.hadoop.mapred.Reducer;import org.apache.hadoop.mapred.OutputCollector;import org.apache.hadoop.mapred.Reporter;import org.apache.hadoop.mapred.MapReduceBase;/** Performs no reduction, writing all input values directly to the output.public class IdentityReducer<K, V>extends MapReduceBase implements Reducer<K, V, K, V> {/** Writes all keys and values directly to output. */public void reduce(K key, Iterator<V> values,OutputCollector<K, V> output, Reporter reporter)throws IOException {while (values.hasNext()) {output.collect(key, values.next());}}
If you require the output of your job to be sorted, the reducer function must pass thekey objects to the output.collect() method unchanged. The reduce phase is, however, free tooutput any number of records, including zero records, with the same key and different values.This particular constraint is also why the map tasks may be multithreaded, while the reducetasks are explicitly only single-threaded.

4.6.2 Configuring a JobAll Hadoop jobs have a driver program that configures the actual MapReduce job andsubmits it to the Hadoop framework. This configuration is handled through the JobConf object.The sample class MapReduceIntro provides a walk-through for using the JobConf object toconfigure and submit a job to the Hadoop framework for execution. The code relies on a classcalled MapReduceIntroConfig, shown in code 4.4, which ensures that the input and outputdirectories are set up and ready.
Code 4.4. MapReduceIntroConfig.javapackage com.apress.hadoopbook.examples.ch2;import java.io.IOException;import java.util.Formatter;

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 149

import java.util.Random;import org.apache.hadoop.fs.FSDataOutputStream;import org.apache.hadoop.fs.FileStatus;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.mapred.JobConf;import org.apache.log4j.Logger;/** A simple class to handle the housekeeping for the MapReduceIntro* example job.*** <p>* This job explicitly configures the job to run, locally and without a* distributed file system, as a stand alone application.* </p>* <p>* The input is read from the directory /tmp/MapReduceIntroInput and* the output is written to the directory* /tmp/MapReduceIntroOutput. If the directory* /tmp/MapReduceIntroInput is missing or empty, it is created and* some input data files generated. If the directory* /tmp/MapReduceIntroOutput is present, it is removed.* </p>** @author Jason Venner*/public class MapReduceIntroConfig {/*** Log4j is the recommended way to provide textual information to the user* about the job.*/protected static Logger logger =Logger.getLogger(MapReduceIntroConfig.class);/** Some simple defaults for the job input and job output. *//*** This is the directory that the framework will look for input files in.* The search is recursive if the entry is a directory.*/protected static Path inputDirectory =new Path("file:///tmp/MapReduceIntroInput");/*** This is the directory that the job output will be written to. It must not* exist at Job Submission time.*/

Introduction to Grid Computing

Page 150 Under Regulation 2013 Anna University

protected static Path outputDirectory =new Path("file:///tmp/MapReduceIntroOutput");/*** Ensure that there is some input in the <code>inputDirectory</code>,* the <code>outputDirectory</code> does not exist and that this job will* be run as a local stand alone application.** @param conf* The {@link JobConf} object that is required for doing file* system access.* @param inputDirectory* The directory the input will reside in.* @param outputDirectory* The directory that the output will reside in* @throws IOException*/protected static void exampleHouseKeeping(final JobConf conf,final Path inputDirectory, final Path outputDirectory)throws IOException {/** * Ensure that this job will be run stand alone rather than relying on* the services of an external JobTracker.*/ conf.set("mapred.job.tracker", "local");/** Ensure that no global file system is required to run this job. */conf.set("fs.default.name", "file:///");/*** Reduce the in ram sort space, so that the user does not need to* increase the jvm memory size. This sets the sort space to 1 Mbyte,* which is very small for a real job.*/conf.setInt("io.sort.mb", 1);/*** Generate some sample input if the <code>inputDirectory</code> is* empty or absent.*/generateSampleInputIf(conf, inputDirectory);/*** Remove the file system item at <code>outputDirectory</code> if it* exists.*/if (!removeIf(conf, outputDirectory)) {logger.error("Unable to remove " + outputDirectory + "job aborted");System.exit(1);}}

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 151

/*** Generate <code>fileCount</code> files in the directory* <code>inputDirectory</code>, where the individual lines of the file* are a random integer TAB file name.** The file names will be file-N where N is between 0 and* <code>fileCount</code> - 1. There will be between 1 and* <code>maxLines</code> + 1 lines in each file.** @param fs* The file system that <code>inputDirectory</code> exists in.* @param inputDirectory* The directory to create the files in. This directory must* already exist.* @param fileCount* The number of files to create.* @param maxLines* The maximum number of lines to write to the file.*protected static void generateRandomFiles(final FileSystem fs,final Path inputDirectory, final int fileCount, final int maxLines)throws IOException {final Random random = new Random();logger .info("Generating 3 input files of random data," +"each record is a random number TAB the input file name");for (int file = 0; file < fileCount; file++) {final Path outputFile = new Path(inputDirectory, "file-" + file);final String qualifiedOutputFile = outputFile.makeQualified(fs).toUri().toASCIIString();FSDataOutputStream out = null;try {/*** This is the standard way to create a file using the Hadoop* Framework. An error will be thrown if the file already* exists.*/out = fs.create(outputFile);final Formatter fmt = new Formatter(out);final int lineCount = (int) (Math.abs(random.nextFloat())* maxLines + 1);for (int line = 0; line < lineCount; line++) {fmt.format("%d\t%s%n", Math.abs(random.nextInt()),qualifiedOutputFile);}fmt.flush();

Introduction to Grid Computing

Page 152 Under Regulation 2013 Anna University

} finally {/*** It is very important to ensure that file descriptors are* closed. The distributed file system code can run out of file* descriptors and the errors generated in that case are* misleading.*/out.close();}}}/*** This method will generate some sample input, if the* <code>inputDirectory</code> is missing or empty.** This method also demonstrates some of the basic APIs for interacting* with file systems and files. Note: the code has no particular knowledge* of the type of file system.** @param conf* The Job Configuration object, used for acquiring the* {@link FileSystem} objects.* @param inputDirectory* The directory to ensure has sample files.* @throws IOException*/protected static void generateSampleInputIf(final JobConf conf,final Path inputDirectory) throws IOException {boolean inputDirectoryExists;final FileSystem fs = inputDirectory.getFileSystem(conf);if ((inputDirectoryExists = fs.exists(inputDirectory))&& !isEmptyDirectory(fs, inputDirectory)) {if (logger.isDebugEnabled()) {logger.debug("The inputDirectory "+ inputDirectory+ " exists and is either a"+ " file or a non empty directory");}return;}/*** We should only get here if <code>inputDirectory</code> does not* exist, or is an empty directory.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 153

*/if (!inputDirectoryExists) {if (!fs.mkdirs(inputDirectory)) {logger.error("Unable to make the inputDirectory "+ inputDirectory.makeQualified(fs) + " aborting job");System.exit(1);}}final int fileCount = 3;final int maxLines = 100;generateRandomFiles(fs, inputDirectory, fileCount, maxLines);}/*** bean access getter to the {@link #inputDirectory} field.** @return the value of inputDirectory.*/public static Path getInputDirectory() {return inputDirectory;}/*** bean access getter to the {@link outputDirectory} field.** @return the value of outputDirectory.*/public static Path getOutputDirectory() {return outputDirectory;}/*** Determine if a directory has any non zero files in it or its descendant* directories.** @param fs* The {@link FileSystem} object to use for access.* @param inputDirectory* The root of the directory tree to search* @return true if the directory is missing or does not contain at least one* non empty file.* @throws IOException*/private static boolean isEmptyDirectory(final FileSystem fs,final Path inputDirectory) throws IOException {/*** This is the standard way to read a directory's contents. This can be* quite expensive for a large directory.

Introduction to Grid Computing

Page 154 Under Regulation 2013 Anna University

*/final FileStatus[] statai = fs.listStatus(inputDirectory); /*** This method returns null under some circumstances, in particular if* the directory does not exist.*/if ((statai == null) || (statai.length == 0)) {if (logger.isDebugEnabled()) {logger.debug(inputDirectory.makeQualified(fs).toUri()+ " is empty or missing");}return true;}if (logger.isDebugEnabled()) {logger.debug(inputDirectory.makeQualified(fs).toUri()+ " is not empty");}/** Try to find a file in the top level that is not empty. */for (final FileStatus status : statai) {if (!status.isDir() && (status.getLen() != 0)) {if (logger.isDebugEnabled()) {logger.debug("A non empty file "+ status.getPath().makeQualified(fs).toUri()+ " was found");return false;}}}/** Recurse if there are sub directories,* looking for a non empty file.*/for (final FileStatus status : statai) {if (status.isDir() && isEmptyDirectory(fs, status.getPath())) {continue;}/*** If status is a directory it must not be empty or the previous* test block would have triggered.*/if (status.isDir()) {return false;}}/*** Only get here if no non empty files were found in the entire subtree

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 155

* of <code>inputPath</code>.*/return true; /*** Ensure that the <code>outputDirectory</code> does not exist.** <p>* The framework requires that the output directory not be present at job* submission time.* </p>* <p>* This method also demonstrates how to remove a directory using the* {@link FileSystem} API.* </p>** @param conf* The configuration object. This is needed to know what file* systems and file system plugins are being used.* @param outputDirectory* The directory that must be removed if present.* @return true if the the <code>outputPath</code> is now missing, or* false if the <code>outputPath</code> is present and was unable* to be removed.* @throws IOException* If there is an error loading or configuring the FileSystem* plugin, or other IO error when attempting to access or remove* the <code>outputDirectory</code>.*/protected static boolean removeIf(final JobConf conf,final Path outputDirectory) throws IOException {/** This is standard way to acquire a FileSystem object. */final FileSystem fs = outputDirectory.getFileSystem(conf);/*** If the <code>outputDirectory</code> does not exist this method is* done.*/if (!fs.exists(outputDirectory)) {if (logger.isDebugEnabled()) {logger .debug("The output directory does not exist,"+ " no removal needed.");}return true;}/*** The getFileStatus command will throw an IOException if the path does

Introduction to Grid Computing

Page 156 Under Regulation 2013 Anna University

* notexist.*/final FileStatus status = fs.getFileStatus(outputDirectory);logger.info("The job output directory "+ outputDirectory.makeQualified(fs) + " exists"+ (status.isDir() ? " and is not a directory" : "")+ " and will be removed");/*** Attempt to delete the file or directory. delete recursively just in* case <code>outputDirectory</code> is a directory with* sub-directories.*/if (!fs.delete(outputDirectory, true)) {logger.error("Unable to delete the configured output directory "+ outputDirectory);return false;}/** The outputDirectory did exist, but has now been removed. */return true;}/*** bean access setter to the {@link inputDirectory} field.** @param inputDirectory* The value to set inputDirectory to.*/public static void setInputDirectory(final Path inputDirectory) {MapReduceIntroConfig.inputDirectory = inputDirectory;}/*** bean access setter for the {@link outpuDirectory field.** @param outputDirectory* The value to set outputDirectory to.*/public static void setOutputDirectory(final Path outputDirectory) {MapReduceIntroConfig.outputDirectory = outputDirectory;}}
First, you must create a JobConf object. It is good practice to pass in a class that iscontained in the JAR file that has your map and reduce functions. This ensures that theframework will make the JAR available to the map and reduce tasks run for your job.JobConf conf = new JobConf(MapReduceIntro.class);

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 157

Now that you have a JobConfig object, conf, you need to set the required parametersfor the job. These include the input and output directory locations, the format of the input andoutput, and the mapper and reducer classes. All jobs will have a map phase, and the map phaseis responsible for handling the job input. The configuration of the map phase requires you tospecify the input locations and the class that will produce the key/value pairs from the input,the mapper class, and potentially, the suggested number of map tasks, map output types, andper-map task threading, as listed in Table 4.2.Most Hadoop Core jobs have their input as some set of files, and these files are either atextual key/value pair per line or a Hadoop-specific binary file format that provides serializedkey/value pairs. The class that handles the key/value text input is KeyValueTextInputFormat.The class that handles the Hadoop-specific binary file is SequenceFileInputFormat.
Table 4.2 Map Phase Configuration

4.6.2.1 Specifying Input FormatsThe Hadoop framework provides a large variety of input formats. The majordistinctions are between textual input formats and binary input formats. The following are theavailable formats:
 KeyValueTextInputFormat: Key/value pairs, one per line.
 TextInputFormant: The key is the line number, and the value is the line.
 NLineInputFormat: Similar to KeyValueTextInputFormat, but the splits are based on Nlines of input rather than Y bytes of input.
 MultiFileInputFormat: An abstract class that lets the user implement an input formatthat aggregates multiple files into one split.
 SequenceFIleInputFormat: The input file is a Hadoop sequence file, containingserialized key/value pairs.KeyValueTextInputFormat and SequenceFileInputFormat are the most commonly usedinput formats. The examples in this chapter use KeyValueTextInputFormat, as the input filesare human-readable. The following block of code informs the framework of the type andlocation of the job input:

Introduction to Grid Computing

Page 158 Under Regulation 2013 Anna University

/*** This section is the actual job configuration portion /*** Configure the inputDirectory and the type of input. In this case* we are stating that the input is text, and each record is a* single line, and the first TAB is the separator between the key* and the value of the record.*/conf.setInputFormat(KeyValueTextInputFormat.class);FileInputFormat.setInputPaths(conf,MapReduceIntroConfig.getInputDirectory());The line conf.setInputFormat(KeyValueTextInputFormat.class) informs the frameworkthat all of the files used for input will be textual key/value pairs, one per line.The framework knows where to look for the input files and the class to use to generatekey/value pairs from the input files, you need to inform the framework which map function touse./** Inform the framework that the mapper class will be the {@link* IdentityMapper}. This class simply passes the input key-value* pairs directly to its output, which in our case will be the* shuffle.*/conf.setMapperClass(IdentityMapper.class);
4.6.2.2 Setting the Output ParametersThe framework requires that the output parameters be configured, even if the job willnot produce any output. The framework will collect the output from the specified tasks (eitherthe output of the map tasks for a MapReduce job that did not include reduce tasks or theoutput of the job’s reduce tasks) and place them into the configured output directory. To avoidissues with file name collisions when placing the task output into the output directory, theframework requires that the output directory not exist when you start the job.In our simple example, the MapReduceIntroConfig class handles ensuring that theoutput directory does not exist and provides the path to the output directory. The outputparameters are actually a little more comprehensive than just the setting of the output path.The code will also set the output format and the output key and value classes.The Text class is the functional equivalent of a String. It implements theWritableComparable interface, which is necessary for keys, and the Writable interface (whichis actually a subset of WritableComparable), which is necessary for values. Unlike String, Textis mutable, and the Text class has some explicit methods for UTF-8 byte handling.The key feature of a Writable is that the framework knows how to serialize anddeserialize a Writable object. The WritableComparable adds the compareTo interface so theframework knows how to sort the WritableComparable objects. The interface references forWritable Comparable and Writable are shown in code 4.5 and 4.6.The following code block provides an example of the minimum required configurationfor the output of a MapReduce job:

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 159

/** Configure the output of the job to go to the output directory.* Inform the framework that the Output Key and Value classes will be* {@link Text} and the output file format will {@link* TextOutputFormat}. The TextOutput format class produces a record of* output for each Key,Value pair, with the following format.* Formatter.format("%s\t%s%n", key.toString(), value.toString());.** In addition indicate to the framework that there will be* 1 reduce. This results in all input keys being placed* into the same, single, partition, and the final output* being a single sorted file.*/FileOutputFormat.setOutputPath(conf,MapReduceIntroConfig.getOutputDirectory());conf.setOutputKeyClass(Text.class);conf.setOutputValueClass(Text.class);The File Output Format. set Output Path(conf,MapReduceIntroConfig.getOutputDirectory()) setting is familiar from the input examplediscussed earlier in the chapter. The conf.setOutputKeyClass(Text.class) andconf.setOutputValueClass(Text.class) settings are new. These settings inform the framework ofthe types of the key/value pairs to expect for the reduce phase. The method to set the outputkey class for the map output is conf.setMapOutputKeyClass(Class<? extendsWritableComparable>). To set the output value class, the method isconf.setMapOutputValueClass(Class<? extends Writable>).Code 4.5. WritableComparable.java/*** Licensed to the Apache Software Foundation(ASF) under one* or more contributor license agreements. Seethe NOTICE file* distributed with this work for additionalinformation* regarding copyright ownership. The ASFlicenses this file* to you under the Apache License, Version2.0 (the* "License"); you may not use this file exceptin compliance* with the License. You may obtain a copy ofthe License at** http://www.apache.org/licenses/LICENSE-

Listing 2-6. Writable.java/*** Licensed to the Apache Software Foundation(ASF) under one* or more contributor license agreements. Seethe NOTICE file* distributed with this work for additionalinformation* regarding copyright ownership. The ASFlicenses this file* to you under the ApacheLicense, Version 2.0 (the* "License"); you may not use this file exceptin compliance* with the License. You may obtain a copy ofthe License at** http://www.apache.org/licenses/LICENSE-2.0

Introduction to Grid Computing

Page 160 Under Regulation 2013 Anna University

2.0** Unless required by applicable law or agreedto in writing, software* distributed under the License is distributedon an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONSOF ANY KIND, either express or implied.* See the License for the specific languagegoverning permissions and* limitations under the License.*/package org.apache.hadoop.io;/*** A {@link Writable} which is also {@linkComparable}.** <p><code>WritableComparable</code>scan be compared to each other, typically* via <code>Comparator</code>s. Any typewhich is to be used as a* <code>key</code> in the Hadoop Map-Reduce framework should implement this* interface.</p>** <p>Example:</p>* <p><blockquote><pre>* public class MyWritableComparableimplements WritableComparable {* // Some data* private int counter;* private long timestamp;** public void write(DataOutput out) throwsIOException {* out.writeInt(counter);* out.writeLong(timestamp);* }** public void readFields(DataInput in) throwsIOException {* counter = in.readInt();* timestamp = in.readLong();* }*

** Unless required by applicable law or agreedto in writing, software* distributed under the License is distributedon an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONSOF ANY KIND, either express or implied.* See the License for the specific languagegoverning permissions and* limitations under the License.*/package org.apache.hadoop.io;import java.io.DataOutput;import java.io.DataInput;import java.io.IOException;/*** A serializable object which implements asimple, efficient, serialization* protocol, based on {@link DataInput} and{@link DataOutput}.* <p>Any <code>key</code> or<code>value</code> type in the HadoopMap-Reduce* framework implements thisinterface.</p>** <p>Implementations typically implement astatic <code>read(DataInput)</code>* method which constructs a new instance,calls {@link #readFields(DataInput)}* and returns the instance.</p>** <p>Example:</p>* <p><blockquote><pre>* public class MyWritable implementsWritable {* // Some data * private int counter;* private long timestamp; ** public void write(DataOutput out) throwsIOException { * out.writeInt(counter);* out.writeLong(timestamp); * }* public void readFields(DataInput in) throwsIOException { * counter = in.readInt();* timestamp = in.readLong(); * }public staticMyWritable read(DataInput in) throwsOException { * MyWritable w = newMyWritable(); * w.readFields(in);* return w;* }* }* </pre></blockquote></p>

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 161

* public intcompareTo(MyWritableComparable w) {* int thisValue = this.value;* int thatValue = ((IntWritable)o).value;* return (thisValue < thatValue ? -1 :(thisValue==thatValue ? 0 : 1));* }* }* </pre></blockquote></p>*/public interface WritableComparable<T>extends Writable, Comparable<T> {}

*/public interface Writable {/*** Serialize the fields of this object to<code>out</code>.** @param out <code>DataOuput</code> toserialize this object into.* @throws IOException*/void write(DataOutput out) throwsIOException;/*** Deserialize the fields of this object from<code>in</code>.** <p>For efficiency,implementations should attempt to re-usestorage in the* existing object wherepossible.</p>** @param in <code>DataInput</code> todeseriablize this object from.* @throwsIOException*/void readFields(DataInput in)throws IOException;}*
4.6.2.3 Configuring the Reduce PhaseTo configure the reduce phase, the user must supply the framework with five pieces ofinformation:

 The number of reduce tasks; if zero, no reduce phase is run
 The class supplying the reduce method
 The input key and value types for the reduce task; by default, the same as the reduceoutput
 The output key and value types for the reduce task
 The output file type for the reduce task outputThe input and output key and value types, as well as the output file type, are the sameas those covered in the previous “Setting the Output Parameters” section. Here, we will look atsetting the number of reduce tasks and the reducer class.The configured number of reduce tasks determines the number of output files for a jobthat will run the reduce phase. Tuning this value will have a significant impact on the overallperformance of your job. The time spent sorting the keys for each output file is a function ofthe number of keys. In addition, the number of reduce tasks determines the maximum numberof reduce tasks that can be run in parallel.The framework generally has a default number of reduce tasks configured. This valueis set by the mapred.reduce.tasks parameter, which defaults to 1. This will result in a singleoutput file containing all of the output keys, in sorted order. There will be one reduce task, runon a single machine that processes every key.The number of reduce tasks is commonly set in the configuration phase of a job.conf.setNumReduceTasks(1);In general, unless there is a significant need for a single output file, the number ofreduce tasks is set to roughly the number of simultaneous execution slots in the cluster. The

Introduction to Grid Computing

Page 162 Under Regulation 2013 Anna University

class DataJoinReduceOutput is provided as a sample for efficiently merging multiple reducetask outputs into a single sorted file.The reducer class needs to be set only if the number of reduce tasks is not zero. It isvery common to not need a reducer, since frequently you do not require sorted output orvalue grouping by key. The actual setting of the reducer class is straightforward:/** Inform the framework that the reducer class will be the* {@link IdentityReducer}. This class simply writes an output record* key/value record for each value in the key/value set it receives as* input. The value ordering is arbitrary.*/conf.setReducerClass(IdentityReducer.class);
4.6.3 Running a JobThe ultimate aim of all your MapReduce job configuration is to actually run that job.The MapReduceIntro.java example code 4.1 demonstrates a common and simple way to run ajob:logger .info("Launching the job.");/** Send the job configuration to the framework* and request that the job be run.*/final RunningJob job = JobClient.runJob(conf);logger.info("The job has completed.");The method runJob() submits the configuration information to the framework andwaits for the framework to finish running the job. The response is provided in the job object.The RunningJob class provides a number of methods for examining the response. Perhaps themost useful is job.isSuccessful().

The response should be as follows:ch2.MapReduceIntroConfig: Generating 3 input files of random data, each recordis a random number TAB the input file namech2.MapReduceIntro: Launching the job.jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=mapred.JobClient: Use GenericOptionsParser for parsing the arguments.Applications should implement Tool for the same.mapred.FileInputFormat: Total input paths to process : 3mapred.FileInputFormat: Total input paths to process : 3mapred.FileInputFormat: Total input paths to process : 3mapred.FileInputFormat: Total input paths to process : 3mapred.JobClient: Running job: job_local_0001

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 163

mapred.MapTask: numReduceTasks: 1mapred.MapTask: io.sort.mb = 1mapred.MapTask: data buffer = 796928/996160mapred.MapTask: record buffer = 2620/3276mapred.MapTask: Starting flush of map outputmapred.MapTask: bufstart = 0; bufend = 664; bufvoid = 996160mapred.MapTask: kvstart = 0; kvend = 14; length = 3276mapred.MapTask: Index: (0, 694, 694)mapred.MapTask: Finished spill 0mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-2:0+664mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.mapred.TaskRunner: Saved output of task 'attempt_local_0001_m_000000_0' tofile:/tmp/MapReduceIntroOutputmapred.MapTask: numReduceTasks: 1mapred.MapTask: io.sort.mb = 1mapred.MapTask: data buffer = 796928/996160mapred.MapTask: record buffer = 2620/3276mapred.MapTask: Starting flush of map outputmapred.MapTask: bufstart = 0; bufend = 3418; bufvoid = 996160mapred.MapTask: kvstart = 0; kvend = 72; length = 3276mapred.MapTask: Index: (0, 3564, 3564)mapred.MapTask: Finished spill 0mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-1:0+3418mapred.TaskRunner: Task 'attempt_local_0001_m_000001_0' done.mapred.TaskRunner: Saved output of task 'attempt_local_0001_m_000001_0' tofile:/tmp/MapReduceIntroOutputmapred.MapTask: numReduceTasks: 1mapred.MapTask: io.sort.mb = 1mapred.MapTask: data buffer = 796928/996160mapred.MapTask: Starting flush of map outputmapred.MapTask: bufstart = 0; bufend = 3986; bufvoid = 996160mapred.MapTask: kvstart = 0; kvend = 84; length = 3276mapred.MapTask: Index: (0, 4156, 4156)mapred.MapTask: Finished spill 0mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-0:0+3986mapred.TaskRunner: Task 'attempt_local_0001_m_000002_0' done.mapred.TaskRunner: Saved output of task 'attempt_local_0001_m_000002_0' tofile:/tmp/MapReduceIntroOutputmapred.ReduceTask: Initiating final on-disk merge with 3 filesmapred.Merger: Merging 3 sorted segmentsmapred.Merger: Down to the last merge-pass, with 3 segments left of total size:8414 bytesmapred.LocalJobRunner: reduce > reducemapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.

Introduction to Grid Computing

Page 164 Under Regulation 2013 Anna University

mapred.TaskRunner: Saved output of task 'attempt_local_0001_r_000000_0' tofile:/tmp/MapReduceIntroOutputmapred.JobClient: Job complete: job_local_0001mapred.JobClient: Counters: 11mapred.JobClient: File Systemsmapred.JobClient: Local bytes read=230060mapred.JobClient: Local bytes written=319797mapred.JobClient: Map-Reduce Frameworkmapred.JobClient: Reduce input groups=170mapred.JobClient: Combine output records=0mapred.JobClient: Map input records=170mapred.JobClient: Reduce output records=170mapred.JobClient: Map output bytes=8068mapred.JobClient: Map input bytes=8068mapred.JobClient: Combine input records=0mapred.JobClient: Map output records=170mapred.JobClient: Reduce input records=170ch2.MapReduceIntro: The job has completed.ch2.MapReduceIntro: The job completed successfully.Congratulations, you have run a MapReduce job.The single output file of the reduce task in the file /tmp/MapReduceIntroOutput/part-00000 will have a series of lines of the form Number TABfile:/tmp/MapReduceIntroInput/file-N. The first thing you will notice is that the numbersdon’t seem to be in order. The code that generates the input produces a random number forthe key of each line, but the example tells the framework that the keys are Text. Therefore, thenumbers have been sorted as text rather than as numbers.
4.7 The Hadoop Distributed File system (HDFS)Hadoop comes with a distributed filesystem called HDFS, which stands for HadoopDistributed Filesystem. HDFS is Hadoop’s flagship file system but Hadoop actually has ageneral purpose file system abstraction, so we’ll see along the way how Hadoop integrateswith other storage systems (such as the local filesystem and Amazon S3).
4.7.1 The Design of HDFSHDFS is a file system designed for storing very large files with streaming data accesspatterns, running on clusters of commodity hardware. Let’s examine this statement in moredetail:

 Very large files-“Very large” in this context means files that are hundreds ofmegabytes, gigabytes, or terabytes in size. There are Hadoop clusters running todaythat store petabytes of data.
 Streaming data access- HDFS is built around the idea that the most efficient dataprocessing pattern is a write-once, read-many-times pattern. A dataset is typicallygenerated or copied from source, and then various analyses are performed on that

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 165

dataset over time. Each analysis will involve a large proportion, if not all, of the dataset,so the time to read the whole dataset is more important than the latency in reading thefirst record.
 Commodity hardware- Hadoop doesn’t require expensive, highly reliable hardware.It’s designed to run on clusters of commodity hardware (commonly availablehardware that can be obtained from multiple vendors)3 for which the chance of nodefailure across the cluster is high, at least for large clusters. HDFS is designed to carryon working without a noticeable interruption to the user in the face of such failure.It is also worth examining the applications for which using HDFS does not work sowell. Although this may change in the future, these are areas where HDFS is not a good fittoday:
 Low-latency data access- Applications that require low-latency access to data, in thetens of milliseconds range, will not work well with HDFS. Remember, HDFS isoptimized for delivering a high throughput of data, and this may be at the expense oflatency. HBase is currently a better choice for low-latency access.
 Lots of small files- Because the name node holds file system metadata in memory, thelimit to the number of files in a file system is governed by the amount of memory onthe name node. As a rule of thumb, each file, directory, and block takes about 150bytes. So, for example, if you had one million files, each taking one block, you wouldneed at least 300 MB of memory. Although storing millions of files is feasible, billions isbeyond the capability of current hardware.
 Multiple writers, arbitrary file modifications- Files in HDFS may be written to by asingle writer. Writes are always made at the end of the file, in append-only fashion.There is no support for multiple writers or for modifications at arbitrary offsets in thefile.

4.7.2 HDFS Concepts
Blocks A disk has a block size, which is the minimum amount of data that it can read or write.HDFS has the concept of a block, but it is a much larger unit 128 MB by default. Like in afilesystem for a single disk, files in HDFS are broken into block-sized chunks, which are storedas independent units. Unlike a filesystem for a single disk, a file in HDFS that is smaller than asingle block does not occupy a full block’s worth of underlying storage. (For example, a 1 MBfile stored with a block size of 128 MB uses 1 MB of disk space, not 128 MB.) Whenunqualified, the term “block” in this book refers to a block in HDFS.

 Large blocks in HDFSHDFS blocks are large compared to disk blocks, and the reason is to minimize the costof seeks. If the block is large enough, the time it takes to transfer the data from the disk can besignificantly longer than the time to seek to the start of the block. Thus, transferring a large filemade of multiple blocks operates at the disk transfer rate.

Introduction to Grid Computing

Page 166 Under Regulation 2013 Anna University

Having a block abstraction for a distributed file system brings several benefits.
 A file can be larger than any single disk in the network. There’s nothing thatrequires the blocks from a file to be stored on the same disk, so they can takeadvantage of any of the disks in the cluster. In fact, it would be possible, if unusual, tostore a single file on an HDFS cluster whose blocks filled all the disks in the cluster.
 Making the unit of abstraction a block rather than a file simplifies the storage

subsystem. Simplicity is something to strive for in all systems, but it is especiallyimportant for a distributed system in which the failure modes are so varied. Thestorage subsystem deals with blocks, simplifying storage management.
 Blocks fit well with replication for providing fault tolerance and availability. Toinsure against corrupted blocks and disk and machine failure, each block is replicatedto a small number of physically separate machines (typically three). If a block becomesunavailable, a copy can be read from another location in a way that is transparent tothe client.

Namenodes and DatanodesAn HDFS cluster has two types of nodes operating in a master−worker pattern:
 A namenode (the master):

o The namenode manages the filesystem namespace.
o It maintains the filesystem tree and the metadata for all the files anddirectories in the tree.
o This information is stored persistently on the local disk in the form of two files:the namespace image and the edit log.

 A number of datanodes (workers):
o The namenode also knows the datanodes on which all the blocks for a givenfile are located
o it does not store block locations persistently, because this information isreconstructed from datanodes when the system starts.

 A client accesses the filesystem on behalf of the user by communicating with thenamenode and datanodes.
o The client presents a filesystem interface similar to a Portable OperatingSystem Interface (POSIX), so the user code does not need to know about thenamenode and datanodes to function.

 Datanodes are the workhorses of the filesystem.
o They store and retrieve blocks when they are told to (by clients or thenamenode), and they report back to the namenode periodically with lists ofblocks that they are storing.
o Without the namenode, the filesystem cannot be used.

 if the machine running the namenode were obliterated, all the files on the filesystemwould be lost since there would be no way of knowing how to reconstruct the filesfrom the blocks on the datanodes.
o For this reason, it is important to make the namenode resilient to failure, andHadoop provides two mechanisms for this.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 167

o The first way is to back up the files that make up the persistent state of thefilesystem metadata. Hadoop can be configured so that the namenode writes itspersistent state to multiple filesystems. These writes are synchronous andatomic. The usual configuration choice is to write to local disk as well as aremote NFS mount.
o It is also possible to run a secondary namenode, which despite its name doesnot act as a namenode. Its main role is to periodically merge the namespaceimage with the edit log to prevent the edit log from becoming too large. Thesecondary namenode usually runs on a separate physical machine because itrequires plenty of CPU and as much memory as the namenode to perform themerge. It keeps a copy of the merged namespace image, which can be used inthe event of the namenode failing. However, the state of the secondarynamenode lags that of the primary, so in the event of total failure of theprimary, data loss is almost certain. The usual course of action in this case is tocopy the namenodes metadata files that are on NFS to the secondary and run itas the new primary

Block CachingNormally a datanode reads blocks from disk, but for frequently accessed files theblocks may be explicitly cached in the datanode’s memory, in an off-heap block cache. Bydefault, a block is cached in only one datanode’s memory, although the number is configurableon a per-file basis. Job schedulers (for MapReduce, Spark, and other frameworks) can takeadvantage of cached blocks by running tasks on the datanode where a block is cached, forincreased read performance. A small lookup table used in a join is a good candidate forcaching, for example. Users or applications instruct the namenode which files to cache (and forhow long) by adding a cache directive to a cache pool. Cache pools are an administrativegrouping for managing cache permissions and resource usage.
HDFS FederationHDFS federation allows a cluster to scale by adding namenodes, each of whichmanages a portion of the filesystem namespace. The namenode keeps a reference to every fileand block in the filesystem in memory, which means that on very large clusters with manyfiles, memory becomes the limiting factor for scaling.
HDFS High AvailabilityThe combination of replicating namenode metadata on multiple filesystems and usingthe secondary namenode to create checkpoints protects against data loss, but it does notprovide high availability of the filesystem. The namenode is still a single point of failure(SPOF). If it did fail, all clients including MapReduce jobs would be unable to read, write, or listfiles, because the namenode is the sole repository of the metadata and the file-to-blockmapping. In such an event, the whole Hadoop system would effectively be out of service until anew namenode could be brought online.To recover from a failed namenode in this situation, an administrator starts a newprimary namenode with one of the filesystem metadata replicas and configures datanodes andclients to use this new namenode. The new namenode is not able to serve requests until it has

Introduction to Grid Computing

Page 168 Under Regulation 2013 Anna University

(i) loaded its namespace image into memory, (ii) replayed its edit log, and (iii) receivedenough block reports from the datanodes to leave safe mode.
Failover and fencingThe transition from the active namenode to the standby is managed by a new entity inthe system called the failover controller. There are various failover controllers, but thedefault implementation uses ZooKeeper to ensure that only one namenode is active. Eachnamenode runs a lightweight failover controller process whose job it is to monitor itsnamenode for failures and trigger a failover should a namenode fail.Failover may also be initiated manually by an administrator, for example, in the case ofroutine maintenance. This is known as a graceful failover, since the failover controllerarranges an orderly transition for both namenodes to switch roles.In the case of an ungraceful failover, however, it is impossible to be sure that the failednamenode has stopped running. For example, a slow network or a network partition cantrigger a failover transition, even though the previously active namenode is still running andthinks it is still the active namenode. The HA implementation goes to great lengths to ensurethat the previously active namenode is prevented from doing any damage and causingcorruption a method known as fencing.
4.7.3 The Command-Line InterfaceThere are many other interfaces to HDFS, but the command line is one of the simplestand, to many developers, the most familiar. There are two properties that we set in the pseudodistributed configuration that deserve further explanation.

o The first is fs.defaultFS, set to hdfs://localhost/, which is used to set a defaultfilesystem for Hadoop. Filesystems are specified by a URI, and here we have used anhdfs URI to configure Hadoop to use HDFS by default. The HDFS daemons will use thisproperty to determine the host and port for the HDFS namenode. We’ll be running it onlocalhost, on the default HDFS port, 8020. And HDFS clients will use this property towork out where the namenode is running so they can connect to it.
o We set the second property, dfs.replication, to 1 so that HDFS doesn’t replicatefilesystem blocks by the default factor of three. When running with a single datanode,HDFS can’t replicate blocks to three datanodes, so it would perpetually warn aboutblocks being under-replicated. This setting solves that problem.

4.7.3.1 Basic Filesystem OperationsThe filesystem is ready to be used, and we can do all of the usual filesystem operations,such as reading files, creating directories, moving files, deleting data, and listing directories.You can type hadoop fs -help to get detailed help on every command.
 Start by copying a file from the local filesystem to HDFS:

% hadoop fs -copyFromLocal input/docs/quangle.txt \
hdfs://localhost/user/tom/quangle.txtThis command invokes Hadoop’s filesystem shell command fs, which supports anumber of subcommands in this case, we are running -copyFromLocal. The local filequangle.txt is copied to the file /user/tom/quangle.txt on the HDFS instance running on

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 169

localhost. In fact, we could have omitted the scheme and host of the URI and picked up thedefault, hdfs://localhost, as specified in core-site.xml:
% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt

 We also could have used a relative path and copied the file to our home directory inHDFS, which in this case is /user/tom:
% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt

 Let’s copy the file back to the local filesystem and check whether it’s the same:
% hadoop fs -copyToLocal quangle.txt quangle.copy.txt
% md5 input/docs/quangle.txt quangle.copy.txt
MD5 (input/docs/quangle.txt) = e7891a2627cf263a079fb0f18256ffb2
MD5 (quangle.copy.txt) = e7891a2627cf263a079fb0f18256ffb2

 Finally, let’s look at an HDFS file listing. We create a directory first just to see how it isdisplayed in the listing:
% hadoop fs -mkdir books
% hadoop fs -ls .
Found 2 items
drwxr-xr-x - tom supergroup 0 2014-10-04 13:22 books
-rw-r--r-- 1 tom supergroup 119 2014-10-04 13:21 quangle.txt

4.7.4 Hadoop FilesystemsHadoop has an abstract notion of filesystems, of which HDFS is just oneimplementation. The Java abstract class org.apache.hadoop.fs. FileSystem represents the clientinterface to a filesystem in Hadoop, and there are several concrete implementations.The main ones that ship with Hadoop are described in Figure 4.10.Hadoop provides many interfaces to its filesystems, and it generally uses the URIscheme to pick the correct filesystem instance to communicate with. For example, thefilesystem shell that we met in the previous section operates with all Hadoop filesystems. Tolist the files in the root directory of the local filesystem, type:% hadoop fs -ls file:///Although it is possible (and sometimes very convenient) to run MapReduce programsthat access any of these filesystems, when you are processing large volumes of data you shouldchoose a distributed filesystem that has the data locality optimization, notably HDFS.
InterfacesHadoop is written in Java, so most Hadoop filesystem interactions are mediatedthrough the Java API. The filesystem shell, for example, is a Java application that uses the JavaFileSystem class to provide filesystem operations. The other filesystem interfaces arediscussed briefly in this section. These interfaces are most commonly used with HDFS, sincethe other filesystems in Hadoop typically have existing tools to access the underlyingfilesystem but many of them will work with any Hadoop filesystem.

Introduction to Grid Computing

Page 170 Under Regulation 2013 Anna University

Figure 4.10 Hadoop filesystems

HTTP By exposing its filesystem interface as a Java API, Hadoop makes it awkward for non-Java applications to access HDFS. The HTTP REST API exposed by the WebHDFS protocolmakes it easier for other languages to interact with HDFS. Note that the HTTP interface isslower than the native Java client, so should be avoided for very large data transfers ifpossible.There are two ways of accessing HDFS over HTTP: directly, where the HDFS daemonsserve HTTP requests to clients; and via a proxy (or proxies), which accesses HDFS on theclient’s behalf using the usual DistributedFileSystem API. The two ways are illustrated inFigure 4.11. Both use the WebHDFS protocol.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 171

Figure 4.11 Accessing HDFS over HTTP directly and via a bank of HDFS proxiesIn the first case, the embedded web servers in the namenode and datanodes act asWebHDFS endpoints. (WebHDFS is enabled by default, since dfs.webhdfs.enabled is set totrue.) File metadata operations are handled by the namenode, while file read (and write)operations are sent first to the namenode, which sends an HTTP redirect to the clientindicating the datanode to stream file data from (or to).The second way of accessing HDFS over HTTP relies on one or more standalone proxyservers. (The proxies are stateless, so they can run behind a standard load balancer.) All trafficto the cluster passes through the proxy, so the client never accesses the namenode ordatanode directly. This allows for stricter firewall and bandwidth-limiting policies to be put inplace. It’s common to use a proxy for transfers between Hadoop clusters located in differentdata centers, or when accessing a Hadoop cluster running in the cloud from an externalnetwork.
C Hadoop provides a C library called libhdfs that mirrors the Java FileSystem interface. Itworks using the Java Native Interface (JNI) to call a Java filesystem client. There is also alibwebhdfs library that uses the WebHDFS interface. The C API is very similar to the Java one,but it typically lags the Java one, so some newer features may not be supported. You can findthe header file, hdfs.h, in the include directory of the Apache Hadoop binary tarballdistribution.
NFS It is possible to mount HDFS on a local client’s filesystem using Hadoop’s NFSv3gateway. You can then use Unix utilities (such as ls and cat) to interact with the filesystem,upload files, and in general use POSIX libraries to access the filesystem from any programming

Introduction to Grid Computing

Page 172 Under Regulation 2013 Anna University

language. Appending to a file works, but random modifications of a file do not, since HDFS canonly write to the end of a file.
FUSE Filesystem in Userspace (FUSE) allows filesystems that are implemented in user spaceto be integrated as Unix filesystems. Hadoop’s Fuse-DFS contrib module allows HDFS (or anyHadoop filesystem) to be mounted as a standard local filesystem. Fuse-DFS is implemented inC using libhdfs as the interface to HDFS.
4.7.5 The Java InterfaceThe Hadoop FileSystem class: the API for interacting with one of Hadoop’s filesystems.This is very useful when testing your program, for example, because you can rapidly run testsusing data stored on the local filesystem.
4.7.5.1 Reading Data from a Hadoop URLOne of the simplest ways to read a file from a Hadoop filesystem is by using ajava.net.URL object to open a stream to read the data from. The general idiom is:InputStream in = null;try {in = new URL("hdfs://host/path").openStream();// process in} finally {IOUtils.closeStream(in);} By calling the setURLStreamHandlerFactory() method on URL with an instance ofFsUrlStreamHandlerFactory is typically executed in a static block.Example 4.1 shows a program for displaying files from Hadoop filesystems onstandard output, like the Unix cat command.Example 4.1 Displaying files from a Hadoop filesystem on standard output using aURLStreamHandlerpublic class URLCat {static {URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());}public static void main(String[] args) throws Exception {InputStream in = null;try {in = new URL(args[0]).openStream();IOUtils.copyBytes(in, System.out, 4096, false);} finally { IOUtils.closeStream(in);}}}sample run:7

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 173

% export HADOOP_CLASSPATH=hadoop-examples.jar% hadoop URLCat hdfs://localhost/user/tom/quangle.txtOn the top of the Crumpetty TreeThe Quangle Wangle sat,But his face you could not see,On account of his Beaver Hat.We make use of the handy IOUtils class that comes with Hadoop for closing the streamin the finally clause, and also for copying bytes between the input stream and the outputstream. The last two arguments to the copyBytes() method are the buffer size used for copyingand whether to close the streams when the copy is complete.
4.7.5.2 Reading Data Using the FileSystem APIsometimes it is impossible to set a URLStreamHand lerFactory for your application. Afile in a Hadoop filesystem is represented by a Hadoop Path object. You can think of a Path as aHadoop filesystem URI, such as hdfs://localhost/user/tom/quangle.txt.FileSystem is a general filesystem API, so the first step is to
retrieve an instance for the filesystem

public static FileSystem get(Configuration conf) throws IOException
public static FileSystem get(URI uri, Configuration conf) throws IOException
public static FileSystem get(URI uri, Configuration conf, String user)

throws IOExceptionA Configuration object encapsulates a client or server’s configuration, which is setusing configuration files read from the classpath, such as etc/hadoop/core-site.xml.
o The first method returns the default filesystem (as specified in core-site.xml, orthe default local filesystem if not specified there).
o The second uses the given URI’s scheme and authority to determine thefilesystem to use, falling back to the default filesystem if no scheme is specifiedin the given URI.
o The third retrieves the filesystem as the given user, which is important in thecontext of security.

retrieve a local file system instanceUse the convenience method getLocal():public static LocalFileSystem getLocal(Configuration conf) throws IOExceptionWith a FileSystem instance in hand, we invoke an open() method to get the input stream for afile:public FSDataInputStream open(Path f) throws IOExceptionpublic abstract FSDataInputStream open(Path f, int bufferSize) throws IOException
Example 4.2. Displaying files from a Hadoop filesystem on standard output by using theFileSystem directly

Introduction to Grid Computing

Page 174 Under Regulation 2013 Anna University

public class FileSystemCat {public static void main(String[] args) throws Exception {String uri = args[0];Configuration conf = new Configuration();FileSystem fs = FileSystem.get(URI.create(uri), conf);InputStream in = null;try {in = fs.open(new Path(uri));IOUtils.copyBytes(in, System.out, 4096, false);} finally {IOUtils.closeStream(in);}}}The program runs as follows:% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txtOn the top of the Crumpetty TreeThe Quangle Wangle sat,But his face you could not see,On account of his Beaver Hat.
FSDataInputStreamThe open() method on FileSystem actually returns an FSDataInputStream rather than astandard java.io class. This class is a specialization of java.io.DataInputStream with support forrandom access, so you can read from any part of the stream:package org.apache.hadoop.fs;public class FSDataInputStream extends DataInputStreamimplements Seekable, PositionedReadable {// implementation elided}The Seekable interface permits seeking to a position in the file and provides a query methodfor the current offset from the start of the file (getPos()):public interface Seekable {void seek(long pos) throws IOException;long getPos() throws IOException;}Calling seek() with a position that is greater than the length of the file will result in anIOException. Unlike the skip() method of java.io.InputStream, which positions the stream at a

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 175

point later than the current position, seek() can move to an arbitrary, absolute position in thefile.Example 4.3 Displaying files from a Hadoop filesystem on standard output twice, by usingseek()public class FileSystemDoubleCat {public static void main(String[] args) throws Exception {String uri = args[0];Configuration conf = new Configuration();FileSystem fs = FileSystem.get(URI.create(uri), conf);FSDataInputStream in = null;try {in = fs.open(new Path(uri));IOUtils.copyBytes(in, System.out, 4096, false);in.seek(0); // go back to the start of the fileIOUtils.copyBytes(in, System.out, 4096, false);} finally {IOUtils.closeStream(in);}}}Here’s the result of running it on a small file:% hadoop FileSystemDoubleCat hdfs://localhost/user/tom/quangle.txtOn the top of the Crumpetty TreeThe Quangle Wangle sat,But his face you could not see,On account of his Beaver Hat.On the top of the Crumpetty TreeThe Quangle Wangle sat,But his face you could not see,On account of his Beaver Hat.
FSDataInputStream also implements the PositionedReadable interface for readingparts of a file at a given offset:public interface PositionedReadable {public int read(long position, byte[] buffer, int offset, int length)throws IOException;public void readFully(long position, byte[] buffer, int offset, int length)throws IOException;public void readFully(long position, byte[] buffer) throws IOException;}

Introduction to Grid Computing

Page 176 Under Regulation 2013 Anna University

The read() method reads up to length bytes from the given position in the file into the buffer atthe given offset in the buffer. The return value is the number of bytes actually read; callersshould check this value, as it may be less than length.
4.7.5.3 Writing DataThe FileSystem class has a number of methods for creating a file. The simplest is themethod that takes a Path object for the file to be created and returns an output stream to writeto: public FSDataOutputStream create(Path f) throws IOExceptionThere are overloaded versions of this method that allow you to specify whether toforcibly overwrite existing files, the replication factor of the file, the buffer size to use whenwriting the file, the block size for the file, and file permissions. There’s also an overloadedmethod for passing a callback interface, Progressablepackage org.apache.hadoop.util;public interface Progressable {public void progress();}As an alternative to creating a new file, you can append to an existing file using the append()method (there are also some other overloaded versions):public FSDataOutputStream append(Path f) throws IOExceptionExample 4.4 Copying a local file to a Hadoop filesystempublic class FileCopyWithProgress {public static void main(String[] args) throws Exception {String localSrc = args[0];String dst = args[1];InputStream in = new BufferedInputStream(new FileInputStream(localSrc));Configuration conf = new Configuration();FileSystem fs = FileSystem.get(URI.create(dst), conf);OutputStream out = fs.create(new Path(dst), new Progressable() {public void progress() {System.out.print(".");}});IOUtils.copyBytes(in, out, 4096, true);}}Typical usage:% hadoop FileCopyWithProgress input/docs/1400-8.txthdfs://localhost/user/tom/1400-8.txt

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 177

FSDataOutputStreamThe create() method on FileSystem returns an FSDataOutputStream, which, likeFSDataInputStream, has a method for querying the current position in the file:package org.apache.hadoop.fs;public class FSDataOutputStream extends DataOutputStream implements Syncable {public long getPos() throws IOException {// implementation elided}// implementation elided}However, unlike FSDataInputStream, FSDataOutputStream does not permit seeking. This isbecause HDFS allows only sequential writes to an open file or appends to an already writtenfile.
4.7.5.4 DirectoriesFileSystem provides a method to create a directory:public boolean mkdirs(Path f) throws IOExceptionThis method creates all of the necessary parent directories if they don’t already exist,just like the java.io.File’s mkdirs() method. It returns true if the directory (and all parentdirectories) was (were) successfully created. Often, don’t need to explicitly create a directory,because writing a file by calling create() will automatically create any parent directories.
4.7.5.5 Querying the FilesystemFile metadata: FileStatusAn important feature of any filesystem is the ability to navigate its directory structureand retrieve information about the files and directories that it stores. The FileStatus classencapsulates filesystem metadata for files and directories, including file length, block size,replication, modification time, ownership, and permission information.The method getFileStatus() on FileSystem provides a way of getting a FileStatus objectfor a single file or directory. Example 4.5 shows an example of its use.Example 4.5. Demonstrating file status informationpublic class ShowFileStatusTest {private MiniDFSCluster cluster; // use an in-process HDFS cluster for testingprivate FileSystem fs;@Beforepublic void setUp() throws IOException {Configuration conf = new Configuration();if (System.getProperty("test.build.data") == null) {System.setProperty("test.build.data", "/tmp");}cluster = new MiniDFSCluster.Builder(conf).build();fs = cluster.getFileSystem();

Introduction to Grid Computing

Page 178 Under Regulation 2013 Anna University

OutputStream out = fs.create(new Path("/dir/file"));out.write("content".getBytes("UTF-8"));out.close();}@Afterpublic void tearDown() throws IOException {if (fs != null) { fs.close(); }if (cluster != null) { cluster.shutdown(); }}@Test(expected = FileNotFoundException.class)public void throwsFileNotFoundForNonExistentFile() throws IOException {fs.getFileStatus(new Path("no-such-file"));}@Testpublic void fileStatusForFile() throws IOException {Path file = new Path("/dir/file");FileStatus stat = fs.getFileStatus(file);assertThat(stat.getPath().toUri().getPath(), is("/dir/file"));assertThat(stat.isDirectory(), is(false));assertThat(stat.getLen(), is(7L));assertThat(stat.getModificationTime(),is(lessThanOrEqualTo(System.currentTimeMillis())));assertThat(stat.getReplication(), is((short) 1));assertThat(stat.getBlockSize(), is(128 * 1024 * 1024L));assertThat(stat.getOwner(), is(System.getProperty("user.name")));assertThat(stat.getGroup(), is("supergroup"));assertThat(stat.getPermission().toString(), is("rw-r--r--"));}@Testpublic void fileStatusForDirectory() throws IOException {Path dir = new Path("/dir");FileStatus stat = fs.getFileStatus(dir);assertThat(stat.getPath().toUri().getPath(), is("/dir"));assertThat(stat.isDirectory(), is(true));assertThat(stat.getLen(), is(0L));assertThat(stat.getModificationTime(),is(lessThanOrEqualTo(System.currentTimeMillis())));assertThat(stat.getReplication(), is((short) 0));assertThat(stat.getBlockSize(), is(0L));assertThat(stat.getOwner(), is(System.getProperty("user.name")));assertThat(stat.getGroup(), is("supergroup"));assertThat(stat.getPermission().toString(), is("rwxr-xr-x"));}}

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 179

If no file or directory exists, a FileNotFoundException is thrown. However, if you areinterested only in the existence of a file or directory, the exists() method on FileSystem is moreconvenient:public boolean exists(Path f) throws IOException
Listing filesFinding information on a single file or directory is useful, but you also often need to beable to list the contents of a directory. That’s what FileSystem’s listStatus() methods are for:public FileStatus[] listStatus(Path f) throws IOExceptionpublic FileStatus[] listStatus(Path f, PathFilter filter) throws IOExceptionpublic FileStatus[] listStatus(Path[] files) throws IOExceptionpublic FileStatus[] listStatus(Path[] files, PathFilter filter)throws IOExceptionWhen the argument is a file, the simplest variant returns an array of FileStatus objectsof length 1. When the argument is a directory, it returns zero or more FileStatus objectsrepresenting the files and directories contained in the directory.Example 4.6 Showing the file statuses for a collection of paths in a Hadoop filesystempublic class ListStatus {public static void main(String[] args) throws Exception {String uri = args[0];Configuration conf = new Configuration();FileSystem fs = FileSystem.get(URI.create(uri), conf);Path[] paths = new Path[args.length];for (int i = 0; i < paths.length; i++) {paths[i] = new Path(args[i]);}FileStatus[] status = fs.listStatus(paths);Path[] listedPaths = FileUtil.stat2Paths(status);for (Path p : listedPaths) {System.out.println(p);}}}We can use this program to find the union of directory listings for a collection of paths:% hadoop ListStatus hdfs://localhost/ hdfs://localhost/user/tomhdfs://localhost/userhdfs://localhost/user/tom/bookshdfs://localhost/user/tom/quangle.txt
File patterns

Introduction to Grid Computing

Page 180 Under Regulation 2013 Anna University

It is a common requirement to process sets of files in a single operation. For example, aMapReduce job for log processing might analyze a month’s worth of files contained in anumber of directories. Rather than having to enumerate each file and directory to specify theinput, it is convenient to use wildcard characters to match multiple files with a singleexpression, an operation that is known as globbing. Hadoop provides two FileSystem methodsfor processing globs:public FileStatus[] globStatus(Path pathPattern) throws IOExceptionpublic FileStatus[] globStatus(Path pathPattern, PathFilter filter)throws IOExceptionThe globStatus() methods return an array of FileStatus objects whose paths match thesupplied pattern, sorted by path. An optional PathFilter can be specified to restrict thematches further.Imagine that logfiles are stored in a directory structure organized hierarchically bydate. So, logfiles for the last day of 2007 would go in a directory named /2007/12/31, forexample. Suppose that the full file listing is:/
├── 2007/
│ └── 12/
│ ├── 30/
│ └── 31/
└── 2008/
└── 01/
├── 01/
└── 02/Here are some file globs and their expansions:Glob Expansion/* /2007 /2008/*/* /2007/12 /2008/01/*/12/* /2007/12/30 /2007/12/31/200? /2007 /2008/200[78] /2007 /2008/200[7-8] /2007 /2008/200[^01234569] /2007 /2008/*/*/{31,01} /2007/12/31 /2008/01/01/*/*/3{0,1} /2007/12/30 /2007/12/31/*/{12/31,01/01} /2007/12/31 /2008/01/01
PathFilterGlob patterns are not always powerful enough to describe a set of files you want to access. Forexample, it is not generally possible to exclude a particular file using a glob pattern. ThelistStatus() and globStatus() methods of FileSystem take an optional PathFilter, which allowsprogrammatic control over matching:package org.apache.hadoop.fs;

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 181

public interface PathFilter {boolean accept(Path path);}PathFilter is the equivalent of java.io.FileFilter for Path objects rather than File objects.Example 4.7 A PathFilter for excluding paths that match a regular expressionpublic class RegexExcludePathFilter implements PathFilter {private final String regex;public RegexExcludePathFilter(String regex) {this.regex = regex;}public boolean accept(Path path) {return !path.toString().matches(regex);}}The filter passes only those files that don’t match the regular expression. After the glob picksout an initial set of files to include, the filter is used to refine the results. For example:fs.globStatus(new Path("/2007/*/*"), new RegexExcludeFilter("^.*/2007/12/31$")) willexpand to /2007/12/30.
4.7.6 Deleting DataUse the delete() method on FileSystem to permanently remove files or directories:public boolean delete(Path f, boolean recursive) throws IOExceptionIf f is a file or an empty directory, the value of recursive is ignored. A nonemptydirectory is deleted, along with its contents, only if recursive is true (otherwise, anIOException is thrown).
Data Flow
Anatomy of a File ReadTo get an idea of how data flows between the client interacting with HDFS, the namenode, andthe datanodes, consider Figure 4.12, which shows the main sequence of events when reading afile.

o The client opens the file it wishes to read by calling open() on the FileSystem object,which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 4.12).
o DistributedFileSystem calls the namenode, using remote procedure calls (RPCs), todetermine the locations of the first few blocks in the file (step 2).
o For each block, the namenode returns the addresses of the datanodes that have a copyof that block. Furthermore, the datanodes are sorted according to their proximity tothe client.

Introduction to Grid Computing

Page 182 Under Regulation 2013 Anna University

o If the client is itself a datanode (in the case of a MapReduce task, for instance), theclient will read from the local datanode if that datanode hosts a copy of the block.
o The DistributedFileSystem returns an FSDataInputStream to the client for it to readdata from. FSDataInputStream in turn wraps a DFSInputStream, which manages thedatanode and namenode I/O. The client then calls read() on the stream (step 3).
o DFSInputStream, which has stored the datanode addresses for the first few blocks inthe file, then connects to the first(closest) datanode for the first block in the file. Data isstreamed from the datanode back to the client, which calls read() repeatedly on thestream (step 4).
o When the end of the block is reached, DFSInputStream will close the connection to thedatanode, then find the best datanode for the next block (step 5).
o Blocks are read in order, with the DFSInputStream opening new connections todatanodes as the client reads through the stream. It will also call the namenode toretrieve the datanode locations for the next batch of blocks as needed. When the clienthas finished reading, it calls close() on the FSDataInputStream (step 6).

Figure 4.12. A client reading data from HDFS

Anatomy of a File WriteNext we’ll look at how files are written to HDFS. Although quite detailed, it isinstructive to understand the data flow because it clarifies HDFS’s coherency model.We’re going to consider the case of creating a new file, writing data to it, then closingthe file. This is illustrated in Figure 4.13.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 183

Figure 4.13 A client writing data to HDFS

o The client creates the file by calling create() on DistributedFileSystem (step 1 in Figure4.13).
o DistributedFileSystem makes an RPC call to the namenode to create a new file in thefilesystem’s namespace, with no blocks associated with it (step 2).
o The namenode performs various checks to make sure the file doesn’t already exist andthat the client has the right permissions to create the file. If these checks pass, thenamenode makes a record of the new file; otherwise, file creation fails and the client isthrown an IOException. The DistributedFileSystem returns an FSDataOutputStreamfor the client to start writing data to. Just as in the read case, FSDataOutputStreamwraps a DFSOutputStream, which handles communication with the datanodes andnamenode.
o As the client writes data (step 3), the DFSOutputStream splits it into packets, which itwrites to an internal queue called the data queue. The data queue is consumed by theDataStreamer, which is responsible for asking the namenode to allocate new blocks bypicking a list of suitable datanodes to store the replicas. The list of datanodes forms apipeline, and here we’ll assume the replication level is three, so there are three nodesin the pipeline.
o The DataStreamer streams the packets to the first datanode in the pipeline, whichstores each packet and forwards it to the second datanode in the pipeline. Similarly,the second datanode stores the packet and forwards it to the third (and last) datanodein the pipeline (step 4).
o The DFSOutputStream also maintains an internal queue of packets that are waiting tobe acknowledged by datanodes, called the ack queue. A packet is removed from the ackqueue only when it has been acknowledged by all the datanodes in the pipeline (step5).
o When the client has finished writing data, it calls close() on the stream (step 6).
o This action flushes all the remaining packets to the datanode pipeline and waits foracknowledgments before contacting the namenode to signal that the file is complete(step 7).

Introduction to Grid Computing

Page 184 Under Regulation 2013 Anna University

Coherency ModelA coherency model for a filesystem describes the data visibility of reads and writes fora file. HDFS trades off some POSIX requirements for performance, so some operations maybehave differently than you expect them to.After creating a file, it is visible in the filesystem namespace, as expected:Path p = new Path("p");fs.create(p);assertThat(fs.exists(p), is(true));However, any content written to the file is not guaranteed to be visible, even if thestream is flushed. So, the file appears to have a length of zero:Path p = new Path("p");OutputStream out = fs.create(p);out.write("content".getBytes("UTF-8"));out.flush();assertThat(fs.getFileStatus(p).getLen(), is(0L));Once more than a block’s worth of data has been written, the first block will be visibleto new readers. This is true of subsequent blocks, too: it is always the current block beingwritten that is not visible to other readers.HDFS provides a way to force all buffers to be flushed to the datanodes via the hflush()method on FSDataOutputStream. After a successful return from hflush(), HDFS guarantees thatthe data written up to that point in the file has reached all the datanodes in the write pipelineand is visible to all new readers:Path p = new Path("p");FSDataOutputStream out = fs.create(p);out.write("content".getBytes("UTF-8"));out.hflush();assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));The behavior of hsync() is similar to that of the fsync() system call in POSIX thatcommits buffered data for a file descriptor. For example, using the standard Java API to write alocal file, we are guaranteed to see the content after flushing the stream and synchronizing:FileOutputStream out = new FileOutputStream(localFile);out.write("content".getBytes("UTF-8"));out.flush(); // flush to operating systemout.getFD().sync(); // sync to diskassertThat(localFile.length(), is(((long) "content".length())));Closing a file in HDFS performs an implicit hflush(), too:Path p = new Path("p");OutputStream out = fs.create(p);out.write("content".getBytes("UTF-8"));out.close();assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));
Consequences for application design

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 185

This coherency model has implications for the way you design applications. With nocalls to hflush() or hsync(), you should be prepared to lose up to a block of data in the event ofclient or system failure. For many applications, this is unacceptable, so you should call hflush()at suitable points, such as after writing a certain number of records or number of bytes.Though the hflush() operation is designed to not unduly tax HDFS,it does have some overhead(and hsync() has more), so there is a trade-off between data robustness and throughput. Whatconstitutes an acceptable trade-off is application dependent, and suitable values can beselected after measuring your application’s performance with different hflush() (or hsync())frequencies.
4.7.7 Parallel Copying with distcpThe HDFS access patterns focus on single-threaded access. It’s possible to act on acollection of files by specifying file globs, for example but for efficient parallel processing ofthese files would have to write a program yourself. Hadoop comes with a useful programcalled distcp for copying data to and from Hadoop filesystems in parallel.One use for distcp is as an efficient replacement for hadoop fs -cp. For example, youcan copy one file to another with:10% hadoop distcp file1 file2You can also copy directories:% hadoop distcp dir1 dir2If dir2 does not exist, it will be created, and the contents of the dir1 directory will becopied there. You can specify multiple source paths, and all will be copied to the destination. Ifdir2 already exists, then dir1 will be copied under it, creating the directory structuredir2/dir1. If this isn’t what you want, you can supply the -overwrite option to keep the samedirectory structure and force files to be overwritten. You can also update only the files thathave changed using the -update option. This is best shown with an example.If we changed a file in the dir1 subtree, we could synchronize the change with dir2 byrunning:% hadoop distcp -update dir1 dir2distcp is implemented as a MapReduce job where the work of copying is done by themaps that run in parallel across the cluster. There are no reducers. Each file is copied by asingle map, and distcp tries to give each map approximately the same amount of data bybucketing files into roughly equal allocations. By default, up to 20 maps are used, but this canbe changed by specifying the -m argument to distcp.A very common use case for distcp is for transferring data between two HDFS clusters.For example, the following creates a backup of the first cluster’s /foo directory on the second:% hadoop distcp -update -delete -p hdfs://namenode1/foo hdfs://namenode2/fooThe -delete flag causes distcp to delete any files or directories from the destination thatare not present in the source, and -p means that file status attributes like permissions, blocksize, and replication are preserved. You can run distcp with no arguments to see precise usageinstructions. If the two clusters are running incompatible versions of HDFS, then you can usethe webhdfs protocol to distcp between them:% hadoop distcp webhdfs://namenode1:50070/foowebhdfs://namenode2:50070/foo

Introduction to Grid Computing

Page 186 Under Regulation 2013 Anna University

Another variant is to use an HttpFs proxy as the distcp source or destination (againusing the webhdfs protocol), which has the advantage of being able to set firewall andbandwidth controls.
Keeping an HDFS Cluster BalancedWhen copying data into HDFS, it’s important to consider cluster balance. HDFS worksbest when the file blocks are evenly spread across the cluster, so you want to ensure thatdistcp doesn’t disrupt this. For example, if you specified -m 1, a single map would do the copy,which apart from being slow and not using the cluster resources efficiently would mean thatthe first replica of each block would reside on the node running the map (until the disk filledup). The second and third replicas would be spread across the cluster, but this one node wouldbe unbalanced. By having more maps than nodes in the cluster, this problem is avoided. Forthis reason, it’s best to start by running distcp with the default of 20 maps per node. However,it’s not always possible to prevent a cluster from becoming unbalanced. Perhaps you want tolimit the number of maps so that some of the nodes can be used by other jobs. In this case, youcan use the balancer tool to subsequently even out the block distribution across the cluster.

UNIT V SECURITY

5. Grid Application Trends and Security MeasuresUsers and resources from multiple administrative organizations are involved in a grid.We need to prevent not only network attacks to data and resources, but also combat theselfishness of grid users and remove the distrust among users. More importantly, we should beaware of the security challenges in grid applications. We need to establish a trust mode forgrid computing. The principles of some grid security enforcement schemes and mechanismsare presented. Specifically, we describe methods to cope with the problems of userauthentication and resource-access authorization.
5.1 Trust Models for Grid Security EnforcementMany potential security issues may occur in a grid environment if qualified securitymechanisms are not in place. These issues include

 network sniffers
 out-of-control access
 faulty operation
 malicious operation
 integration of local security mechanisms
 delegation
 dynamic resources and services
 attack provenance, and so on.

Trust models for Grid security environment – Authentication and Authorization methods – Grid
security infrastructure – Cloud Infrastructure security: network, host and application level – aspects
of data security, provider data and its security, Identity and access management architecture, IAM
practices in the cloud, SaaS, PaaS, IaaS availability in the cloud, Key privacy issues in the cloud.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 187

Computational grids are motivated by the desire to share processing resources
among many organizations to solve large-scale problems. Indeed, grid sites may exhibitunacceptable security conditions and system vulnerabilities.
Security-assurance condition

 a user job demands the resource site to provide security assurance by issuing a
security demand (SD).

 The site needs to reveal its trustworthiness, called its trust index (TI).
 These two parameters must satisfy a security-assurance condition: TI ≥ SD duringthe job mapping process.When determining its security demand, users usually care about some typicalattributes. These attributes and their values are dynamically changing and depend heavily onthe trust model, security policy, accumulated reputation, self-defense capability, attack history,and site vulnerability.

Three challenges are outlined below to establish the trust among grid sites.
[1]. the first challenge is integration with existing systems and technologies.

 The resources sites in a grid are usually heterogeneous and autonomous.
 It is unrealistic to expect that a single type of security can be compatible with andadopted by every hosting environment.
 At the same time, existing security infrastructure on the sites cannot be replacedovernight.
 Thus, to be successful, grid security architecture needs to step up to the challenge ofintegrating with existing security architecture and models across platforms andhosting environments.

[2]. the second challenge is interoperability with different “hosting environments.”
 Services are often invoked across multiple domains, and need to be able to interactwith one another.
 The interoperation is demanded at the protocol, policy, and identity levels.
 For all these levels, interoperation must be protected securely.

[3]. the third challenge is to construct trust relationships among interacting hosting
environments.

 Grid service requests can be handled by combining resources on multiple securitydomains.
 Trust relationships are required by these domains during the end-to-end traversals.
 A service needs to be open to friendly and interested entities so that they can submitrequests and access securely.

Resource sharing among entities is one of the major goals of grid computing.
 A trust relationship must be established before the entities in the grid interoperatewith one another.
 The entities have to choose other entities that can meet the requirements of trust tocoordinate with.

Introduction to Grid Computing

Page 188 Under Regulation 2013 Anna University

 The entities that submit requests should believe the resource providers will try toprocess their requests and return the results with a specified QoS.
 To create the proper trust relationship between grid entities, two kinds of trust

models are often used.
 One is the PKI-based model, which mainly exploits the PKI to authenticateand authorize entities
 The other is the reputation-based model.The grid aims to construct a large-scale network computing system by integratingdistributed, heterogeneous, and autonomous resources. The security challenges faced by thegrid are much greater than other computing systems. Before any effective sharing andcooperation occurs, a trust relationship has to be established among participants. Otherwise,not only will participants be reluctant to share their resources and services, but also the gridmay cause a lot of damage.

5.1.1 A Generalized Trust ModelFigure 5.1 shows a general trust model. At the bottom, we identify three major factorswhich influence the trustworthiness of a resource site.

Figure 5.1 A general trust model for grid computing

An inference module is required to aggregate these factors. Followings are someexisting inference or aggregation methods.
 An intra-site fuzzy inference procedure is called to assess defense capability anddirect reputation.
 Defense capability is decided by the firewall, intrusion detection system (IDS),intrusion response capability, and anti-virus capacity of the individual resource site.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 189

 Direct reputation is decided based on the job success rate, site utilization, jobturnaround time, and job slowdown ratio measured.Recommended trust is also known as secondary trust and is obtained indirectly overthe grid network.
5.1.2 Reputation-Based Trust Model

 In a reputation-based model, jobs are sent to a resource site only when the site istrustworthy to meet users’ demands. The site trustworthiness is usually calculatedfrom the following information:
 the defense capability
 direct reputation
 recommendation trust

 The defense capability refers to the site’s ability to protect itself from danger. It isassessed according to such factors as intrusion detection, firewall, responsecapabilities, anti-virus capacity, and so on.
 Direct reputation is based on experiences of prior jobs previously submitted to thesite.
 The reputation is measured by many factors such as prior job execution success rate,cumulative site utilization, job turnaround time, job slowdown ratio, and so on.
 A positive experience associated with a site will improve its reputation. On thecontrary, a negative experience with a site will decrease its reputation.

5.1.2 A Fuzzy-Trust Model
 In this model the job security demand (SD) is supplied by the user programs.
 The trust index (TI) of a resource site is aggregated through the fuzzy-logic inferenceprocess over all related parameters.
 One can use a two-level fuzzy logic to estimate the aggregation of numerous trustparameters and security attributes into scalar quantities that are easy to use in the jobscheduling and resource mapping process.
 The TI is normalized as a single real number with

o 0 representing the condition with the highest risk at a site
o 1 representing the condition which is totally risk-free or fully trusted.

 The fuzzy inference is accomplished through four steps:
o fuzzification,
o inference,
o aggregation, and
o defuzzification.

 The second salient feature of the trust model is that if a site’s trust index cannot matchthe job security demand (i.e., SD > TI), the trust model could deduce detailed securityfeatures to guide the site security upgrade as a result of tuning the fuzzy system.
5.2 Authentication and Authorization MethodsThe major authentication methods in the grid include passwords, PKI, and Kerberos.

Introduction to Grid Computing

Page 190 Under Regulation 2013 Anna University

 The password is the simplest method to identify users, but the most vulnerable one touse.
 The PKI is the most popular method supported by GSI.

o To implement PKI, we use a trusted third party, called the certificate authority(CA).
o Each user applies a unique pair of public and private keys.
o The public keys are issued by the CA by issuing a certificate, after recognizing alegitimate user.
o The private key is exclusive for each user to use, and is unknown to any otherusers.
o A digital certificate in IEEE X.509 format consists of the user name, user publickey, CA name, and a secrete signature of the user.The following example illustrates the use of a PKI service in a grid environment.

Example: Trust Delegation Using the Proxy Credential in GSIThe PKI is not strong enough for user authentication in a grid. Figure 5.2 shows ascenario where a sequence of trust delegation is necessary. Bob and Charlie both trust Alice,but Charlie does not trust Bob. Now, Alice submits a task Z to Bob. The task Z demands manyresources for Bob to use, independently. Bob forwards a subtask Y of Z to Charlie. BecauseCharlie does not trust Bob and is not sure whether Y is really originally requested by Alice, thesubtask Y from Bob is rejected for resources byCharlie.

Figure 5.2 Interactions among multiple parties in a sequence of trust delegation
operations using the PKI services in a GT4-enabled grid environment.For Charlie to accept the subtask Y, Bob needs to show Charlie some proof of entrustfrom Alice. A proxy credential is the solution proposed by GSI. A proxy credential is atemporary certificate generated by a user. Two benefits are seen by using proxy credentials.First, the proxy credential is used by its holder to act on behalf of the original user or thedelegating party. A user can temporarily delegate his right to a proxy. Second, single sign-oncan be achieved with a sequence of credentials passed along the trust chain.The delegating party (Alice) need not verify the remote intermediate parties in a trustchain. The only difference between the proxy credential and a digital certificate is that theproxy credential is not signed by a CA. We need to known the relationship among the

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 191

certificates of the CA and Alice, and proxy credential of Alice. The CA certificate is signed firstwith its own private key. Second, the certificate Alice holds is signed with the private key ofthe CA. Finally, the proxy credential sent to her proxy (Bob) is signed with her private key. Theprocedure delegates the rights of Alice to Bob by using the proxy credential.First, the generation of the proxy credential is similar to the procedure of generating auser certificate in the traditional PKI. Second, when Bob acts on behalf of Alice, he sends therequest together with Alice’s proxy credential and the Alice certificate to Charlie. Third, afterobtaining the proxy credential, Charlie finds out that the proxy credential is signed by Alice. Sohe tries to verify the identity of Alice and finds Alice trustable. Finally, Charlie accepts Bob’srequests on behalf of Alice. This is called a trust delegation chain.
5.2.1 Authorization for Access ControlThe authorization is a process to exercise access control of shared resources. Decisionscan be made either at the access point of service or at a centralized place. Typically, theresource is a host that provides processors and storage for services deployed on it. Based on aset predefined policies or rules, the resource may enforce access for local services. The centralauthority is a special entity which is capable of issuing and revoking polices of access rightsgranted to remote accesses. The authority can be classified into three categories: attributeauthorities, policy authorities, and identity authorities. Attribute authorities issue attributeassertions; policy authorities issue authorization policies; identity authorities issuecertificates. The authorization server makes the final authorization decision.
5.2.2 Three Authorization ModelsFigure 5.3 shows three authorization models. The subject is the user and the resourcerefers to the machine side.

Figure 5.3 Three authorization models: the subject-push model, resource-pulling
model, and the authorization agent model.

 The subject-push model is shown at the top diagram. The user conducts handshakewith the authority first and then with the resource site in a sequence.
 The resource-pulling model puts the resource in the middle. The user checks theresource first. Then the resource contacts its authority to verify the request, and theauthority authorizes at step 3. Finally the resource accepts or rejects the request fromthe subject at step 4.

Introduction to Grid Computing

Page 192 Under Regulation 2013 Anna University

 The authorization agent model puts the authority in the middle. The subject checkwith the authority at step 1 and the authority makes decisions on the access of therequested resources. The authorization process is complete at steps 3 and 4 in thereverse direction.
5.3 Grid Security Infrastructure (GSI)The grid is increasingly deployed as a common approach to constructing dynamic,inter domain, distributed computing and data collaborations, “lack of security/trust
between different services” is still an important challenge of the grid.The grid requires a security infrastructure with the following properties:

 easy to use
 conforms with the VO’s security needs while working well with site policies of eachresource provider site
 and provides appropriate authentication and encryption of all interactions

Grid Security Infrastructure
 The GSI is an important step toward satisfying these requirements.
 As a well-known security solution in the grid environment, GSI is a portion of theGlobus Toolkit and provides fundamental security services needed to support grids,including supporting for

 message protection
 authentication and delegation
 and authorization

 GSI enables secure authentication and communication over an open network, andpermits mutual authentication across and among distributed sites with single sign-oncapability.
 No centrally managed security system is required, and the grid maintains the integrityof its members’ local policies.
 GSI supports both message-level security, which supports the WS Security standardand the WS-Secure Conversation specification to provide message protection for SOAPmessages, and transport-level security, which means authentication via TLS withsupport for X.509 proxy certificates.

5.3.1 GSI Functional LayersGT4 provides distinct WS and pre-WS authentication and authorization capabilities.Both build on the same base, namely the X.509 standard and entity certificates and proxycertificates, which are used to identify persistent entities such as users and servers and tosupport the temporary delegation of privileges to other entities, respectively.As shown in Figure 5.4, GSI may be thought of as being composed of four distinctfunctions: message protection, authentication, delegation, and authorization.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 193

Figure 5.4 GSI functional layers at the message and transport levels

 TLS (transport-level security) or WS-Security and WS-Secure Conversation
(message-level) are used as message protection mechanisms in combination withSOAP.

 X.509 End Entity Certificates or Username and Password are used as authenticationcredentials. X.509 Proxy Certificates and WSTrust are used for delegation.
 An Authorization Framework allows for a variety of authorization schemes, including a“grid-mapfile” ACL, an ACL defined by a service, a custom authorization handler, andaccess to an authorization service via the SAML protocol.
 In addition, associated security tools provide for the storage of X.509 credentials(MyProxy and Delegation services), the mapping between GSI and other authenticationmechanisms (e.g., KX509 and PKINIT for Kerberos, MyProxy for one-time passwords),and maintenance of information used for authorization (VOMS, GUMS, PERMIS).
 The web services portions of GT4 use SOAP as their message protocol forcommunication. Message protection can be provided either by transport level security,which transports SOAP messages over TLS, or by message-level security, which issigning and/or encrypting portions of the SOAP message using the WS-Securitystandard.

5.3.2 Transport-Level Security
 Transport-level security entails SOAP messages conveyed over a network connectionprotected by TLS. TLS provides for both integrity protection and privacy (viaencryption).
 Transport-level security is normally used in conjunction with X.509 credentials forauthentication, but can also be used without such credentials to provide messageprotection without authentication, often referred to as “anonymous transport-levelsecurity.”
 In this mode of operation, authentication may be done by username and password in aSOAP message.

5.3.3 Message-Level Security
 GSI provides message-level security for message protection for SOAP messages byimplementing the WS-Security standard and the WS-Secure Conversation specification.

Introduction to Grid Computing

Page 194 Under Regulation 2013 Anna University

 The WSSecurity standard from OASIS defines a framework for applyingsecurity to individual SOAP messages
 WS-Secure Conversation is a proposed standard from IBM and Microsoft thatallows for an initial exchange of messages to establish a security context whichcan then be used to protect subsequent messages in a manner that requiresless computational overhead (i.e., it allows the tradeoff of initial overhead forsetting up the session for lower overhead for messages).

 GSI conforms to this standard. GSI uses these mechanisms to provide security on a
per-message basis, that is, to an individual message without any preexisting contextbetween the sender and receiver (outside of sharing some set of trust roots).

 GSI, as described further in the subsequent section on authentication, allows for bothX.509 public key credentials and the combination of username and password forauthentication; however, differences still exist.
 With username/password, only the WS-Security standard can be used to allow forauthentication; that is, a receiver can verify the identity of the communication initiator.
 GSI allows three additional protection mechanisms.

 The first is integrity protection, by which a receiver can verify that messageswere not altered in transit from the sender.
 The second is encryption, by which messages can be protected to provideconfidentiality.
 The third is replay prevention, by which a receiver can verify that it has notreceived the same message previously.These protections are provided between WS-Security and WS-Secure Conversation.The former applies the keys associated with the sender and receiver’s X.509 credentials. TheX.509 credentials are used to establish a session key that is used to provide the messageprotection.

5.3.4 Authentication and DelegationGSI has traditionally supported authentication and delegation through the use of X.509certificates and public keys. As a new feature in GT4, GSI also supports authentication throughplain usernames and passwords as a deployment option. We discuss both methods in thissection. GSI uses X.509 certificates to identify persistent users and services.As a central concept in GSI authentication, a certificate includes four primary pieces ofinformation:1. A subject name, which identifies the person or object that the certificate represents;2. The public key belonging to the subject;3. The identity of a CA that has signed the certificate to certify that the public key and theidentity both belong to the subject; and4. The digital signature of the named CA. X.509 provides each entity with a uniqueidentifier (i.e., a distinguished name) and a method to assert that identifier to anotherparty through the use of an asymmetric key pair bound to the identifier by thecertificate.The X.509 certificate used by GSI is conformant to the relevant standards andconventions. Grid deployments around the world have established their own CAs based onthird-party software to issue the X.509 certificate for use with GSI and the Globus Toolkit. GSI

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 195

also supports delegation and single sign-on through the use of standard X.509 proxycertificates. Proxy certificates allow bearers of X.509 to delegate their privileges temporarilyto another entity. For the purposes of authentication and authorization, GSI treats certificatesand proxy certificates equivalently. Authentication with X.509 credentials can be accomplishedeither via TLS, in the case of transport-level security, or via signature as specified by WS-Security, in the case of message-level security.
Example: Mutual Authentication between Two PartiesMutual authentication is processes by which two parties with certificates signed by theCA prove to each other that they are who they say they are based on the certificate and thetrust of the CAs that signed each other’s certificates.GSI uses the Secure Sockets Layer (SSL) for its mutual authentication protocol, whichis described in Figure 5.5. To mutually authenticate, the first person (Alice) establishes aconnection to the second person (Bob) to start the authentication process.

Figure 5.5 Multiple handshaking in a mutual authentication scheme

Alice gives Bob her certificate. The certificate tells Bob who Alice is claiming to be (theidentity), what Alice’s public key is, and what CA is being used to certify the certificate. Bobwill first make sure the certificate is valid by checking the CA’s digital signature to make surethe CA actually signed the certificate and the certificate hasn’t been tampered with. Once Bobhas checked out Alice’s certificate, Bob must make sure Alice really is the person identified inthe certificate.Bob generates a random message and sends it to Alice, asking Alice to encrypt it. Aliceencrypts the message using her private key, and sends it back to Bob. Bob decrypts themessage using Alice’s public key. If this results in the original random message, Bob knowsAlice is who she says she is. Now that Bob trusts Alice’s identity, the same operation must

Introduction to Grid Computing

Page 196 Under Regulation 2013 Anna University

happen in reverse. Bob sends Alice his certificate, and Alice validates the certificate and sendsa challenge message to be encrypted. Bob encrypts the message and sends it back to Alice, andAlice decrypts it and compares it with the original. If it matches, Alice knows Bob is who hesays he is.
5.3.5 Trust DelegationTo reduce or even avoid the number of times the user must enter his passphrase whenseveral grids are used or have agents (local or remote) requesting services on behalf of a user,GSI provides a delegation capability and a delegation service that provides an interface toallow clients to delegate (and renew) X.509 proxy certificates to a service.

 The interface to this service is based on the WSTrust specification.
 A proxy consists of a new certificate and a private key.
 The key pair that is used for the proxy, that is, the public key embedded in thecertificate and the private key, may either be regenerated for each proxy or beobtained by other means.
 The new certificate contains the owner’s identity, modified slightly to indicate that it isa proxy.
 The new certificate is signed by the owner, rather than a CA (see Figure 5.6).

Figure 5.6 A sequence of trust delegations in which new certificates are signed by the
owners rather by the CA.

The certificate also includes a time notation after which the proxy should no longer
be accepted by others.

 Proxies have limited lifetimes.Because the proxy isn’t valid for very long, it doesn’t have to stay quite as secure as theowner ’s private key, and thus it is possible to store the proxy’s private key in a local storagesystem without being encrypted, as long as the permissions on the file prevent anyone elsefrom looking at them easily.
 Once a proxy is created and stored, the user can use the proxy certificate and

private key for mutual authentication without entering a password.
 When proxies are used, the mutual authentication process differs slightly.
 The remote party receives not only the proxy’s certificate (signed by theowner), but also the owner’s certificate.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 197

 During mutual authentication, the owner’s public key (obtained from hercertificate) is used to validate the signature on the proxy certificate.
 The CA’s public key is then used to validate the signature on the owner’scertificate.
 This establishes a chain of trust from the CA to the last proxy through thesuccessive owners of resources.The GSI uses WS-Security with textual usernames and passwords. This mechanismsupports more rudimentary web service applications. When using usernames and passwordsas opposed to X.509 credentials, the GSI provides authentication, but no advanced securityfeatures such as delegation, confidentiality, integrity, and replay prevention. However, one canuse usernames and passwords with anonymous transport-level security such asunauthenticated TLS to ensure privacy.

5.4 Cloud Infrastructure security: Network levelWhen looking at the network level of infrastructure security, it is important todistinguish between public clouds and private clouds.
With private clouds

 There are no new attacks, vulnerabilities, or changes in risk specific to this topologythat information security personnel need to consider.
 Although organization’s IT architecture may change with the implementation of aprivate cloud, current network topology will probably not change significantly.
 If you have a private extranet in place (e.g., for premium customers or strategicpartners), for practical purposes you probably have the network topology for a privatecloud in place already.
 The security considerations you have today apply to a private cloud infrastructure, too.
 And the security tools you have in place (or should have in place) are also necessaryfor a private cloud and operate in the same way.
 Figure 5.7 shows the topological similarities between a secure extranet and a privatecloud.

Introduction to Grid Computing

Page 198 Under Regulation 2013 Anna University

Figure 5.7 Generic network topology for private cloud computing

With public cloud services
 Changing security requirements will require changes to your network topology.
 You must address how your existing network topology interacts with your cloudprovider’s network topology.
 There are four significant risk factors in this use case:

 Ensuring the confidentiality and integrity of your organization’s data-in-transitto and from your public cloud provider.
 Ensuring proper access control (authentication, authorization, and auditing) towhatever resources you are using at your public cloud provider.
 Ensuring the availability of the Internet-facing resources in a public cloud thatare being used by your organization, or have been assigned to yourorganization by your public cloud providers.
 Replacing the established model of network zones and tiers with domains.

5.4.1 Ensuring data confidentiality and integritySome resources and data previously confined to a private network are now exposed tothe Internet, and to a shared public network belonging to a third-party cloud provider.
 An example of problems associated with this first risk factor is an Amazon WebServices (AWS) security vulnerability reported in December 2008.* In a blog post, theauthor detailed a flaw in the digital signature algorithm used when “... making Query(aka REST) requests to Amazon SimpleDB, to Amazon Elastic Compute Cloud (EC2), orto Amazon Simple Queue Service (SQS) over HTTP.” Although use of HTTPS (instead ofHTTP) would have mitigated the integrity risk, users not using HTTPS (but using

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 199

HTTP) did face an increased risk that their data could have been altered in transitwithout their knowledge.
5.4.2 Ensuring proper access controlSince some subset of these resources (or maybe even all of them) is now exposed tothe Internet, an organization using a public cloud faces a significant increase in risk to its data.The ability to audit the operations of cloud provider’s network is probably non-existent. Youwill have decreased access to relevant network-level logs and data, and a limited ability tothoroughly conduct investigations and gather forensic data.

 An example of the problems associated with this second risk factor is the issue ofreused (reassigned) IP addresses.
 Cloud providers do not sufficiently “age” IP addresses when they are no longer neededfor one customer. Addresses are usually reassigned and reused by other customers asthey become available.
 From a cloud provider’s perspective this makes sense. IP addresses are a finitequantity and a billable asset.
 However, from a customer’s security perspective, the persistence of IP addresses thoseare no longer in use can present a problem.
 A customer can’t assume that network access to its resources is terminated uponrelease of its IP address.
 There is necessarily a lag time between the change of an IP address in DNS and theclearing of that address in DNS caches.
 There is a similar lag time between when physical (i.e., MAC) addresses are changed inARP tables and when old ARP addresses are cleared from cache; an old addresspersists in ARP caches until they are cleared.
 This means that even though addresses might have been changed, the (now) oldaddresses are still available in cache, and therefore they still allow users to reach thesesupposedly non-existent resources.
 Recently, there were many reports of problems with “non-aged” IP addresses at oneof the largest cloud providers; this was likely an impetus for an AWS announcement ofthe Amazon Elastic IP capabilities in March 2008.However, the issue of “non-aged” IP addresses and unauthorized network access toresources does not apply only to routable IP addresses (i.e., resources intended to bereachable directly from the Internet).The issue also applies to cloud providers’ internal networks for customer use andthe assignment of non-routable IP addresses.
 Although your resources may not be directly reachable from the Internet, formanagement purposes your resources must be accessible within the cloud provider’snetwork via private addressing.
 Other customers of your cloud provider may not be well intentioned and might be ableto reach your resources internally via the cloud provider’s networks.Some products emerging onto the market will help alleviate the problem of IP addressreuse, but unless cloud providers offer these products as managed services, customers are

Introduction to Grid Computing

Page 200 Under Regulation 2013 Anna University

paying for yet another third-party product to solve a problem that their cloud provider’spractices created for them.
5.4.3 Ensuring the availability of the Internet-facing resourcesReliance on network security has increased because an increased amount of data or anincreased number of organizational personnel now depend on externally hosted devices toensure the availability of cloud-provided resources. Misconfiguration occurs and can blockaccess to data.
Three Risks:
[1]. Prefix Hijacking :Border Gateway Protocol prefix hijacking the falsification of Network LayerReachability Information provides a good example of this third risk factor. Prefix hijackinginvolves announcing an autonomous system address space that belongs to someone elsewithout her permission. Such announcements often occur because of a configuration mistake,but that misconfiguration may still affect the availability of your cloud-based resources. Thebest known example of such a misconfiguration mistake occurred in February 2008 whenPakistan Telecom made an error by announcing a dummy route for YouTube to its owntelecommunications partner, PCCW, based in Hong Kong. The intent was to block YouTubewithin Pakistan because of some supposedly blasphemous videos hosted on the site. Theresult was that YouTube was globally unavailable for two hours.[2]. DNS attacks:Another example of problems associated with this third risk factor. In fact, there areseveral forms of DNS attacks to worry about with regard to cloud computing. Although DNSattacks are not new and are not directly related to the use of cloud computing, the issue withDNS and cloud computing is an increase in an organization’s risk at the network level becauseof increased external DNS querying (reducing the effectiveness of “split horizon” DNSconfigurations) along with some increased number of organizational personnel being moredependent on network security to ensure the availability of cloud-provided resources beingused.

 “Kaminsky Bug”, “DNS Insufficient Socket Entropy Vulnerability” garnered most ofthe network security attention in 2008, other DNS problems impact cloud computingas well. Not only are there vulnerabilities in the DNS protocol and in implementationsof DNS, but also there are fairly widespread DNS
 Cache poisoning attacks whereby a DNS server is tricked into accepting incorrectinformation. Although many people thought DNS cache poisoning attacks had beenquashed several years ago, that is not true, and these attacks are still very much aproblem—especially in the context of cloud computing.
 Variants of this basic cache poisoning attack include redirecting the target domain’sname server (NS), redirecting the NS record to another target domain, and respondingbefore the real NS (called DNS forgery).[3]. Denial of Service (DoS) and distributed denial of service (DDoS) attacks. DoS/DDoSattacks are not new and are not directly related to the use of cloud computing, the issue with

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 201

these attacks and cloud computing is an increase in an organization’s risk at the network levelbecause of some increased use of resources external to your organization’s network. Forexample, there continue to be rumors of continued DDoS attacks on AWS, making the servicesunavailable for hours at a time to AWS users.However, when using IaaS, the risk of a DDoS attack is not only external (i.e.,Internet-facing). There is also the risk of an internal DDoS attack through the portion of theIaaS provider’s network used by customers (separate from the IaaS provider’s corporatenetwork). That internal (non-routable) network is a shared resource, used by customers foraccess to their non-public instances (e.g., Amazon Machine Images or AMIs) as well as by theprovider for management of its network and resources (such as physical servers.The only preventive controls other customers would have would be how hardenedtheir instances (e.g., AMIs) are, and whether they are taking advantage of a provider’scapabilities to firewall off groups of instances (e.g., AWS).
5.4.4 Replacing the established model of network zones and tiers with domainsThe established isolation model of network zones and tiers no longer exists in thepublic IaaS and PaaS clouds. For years, network security has relied on zones, such as intranet
versus extranet and development versus production, to segregate network traffic forimproved security. This model was based on exclusion only individuals and systems inspecific roles have access to specific zones. Similarly, systems within a specific tier often haveonly specific access within or across a specific tier.

 For example, systems within a presentation tier are not allowed to communicatedirectly with systems in the database tier, but can communicate only with anauthorized system within the application zone. SaaS clouds built on public IaaS or PaaSclouds have similar characteristics. However, a public SaaS built on a private IaaS (e.g.,Salesforce.com) may follow the traditional isolation model, but that topologyinformation is not typically shared with customers.The traditional model of network zones and tiers has been replaced in public cloudcomputing with “security groups,” “security domains ”or“ virtual data centers” that havelogical separation between tiers but are less precise and afford less protection than theformerly established model.
 For example, the security groups feature in AWS allows your virtual machines (VMs) toaccess each other using a virtual firewall that has the ability to filter traffic based on IPaddress (a specific address or a subnet), packet types (TCP, UDP, or ICMP), and ports(or a range of ports). Domain names are used in various networking contexts andapplication-specific naming and addressing purposes, based on DNS. For example,Google’s App Engine provides a logical grouping of applications based on domainnames such as mytestapp.test.mydomain.com and myprodapp.prod.mydomain.com.In the established model of network zones and tiers, not only were development

systems logically separated from production systems at the network level, but these twogroups of systems were also physically separated at the host level (i.e., they ran on physicallyseparated servers in logically separated network zones). With cloud computing, however, thisseparation no longer exists. The cloud computing model of separation by domains provideslogical separation for addressing purposes only. There is no longer any “required” physical

Introduction to Grid Computing

Page 202 Under Regulation 2013 Anna University

separation, as a test domain and a production domain may very well be on the same physicalserver. Furthermore, the former logical network separation no longer exists; logicalseparation now is at the host level with both domains running on the same physical server andbeing separated only logically by VM monitors (hypervisors).
5.4.5 Network Level MigrationWhat can you do to mitigate these increased risk factors?

 First, note that network-level risks exist regardless of what aspects of “cloud
computing” services are being used (e.g., software-as-a-service, platform-as-a-service, or infrastructure-as-a-service).
 The primary determination of risk level is therefore not which *aaS is beingused, but rather whether your organization intends to use or is using a public,private, or hybrid cloud.
 Although some IaaS clouds offer virtual network zoning, they may not match aninternal private cloud environment that performs stateful inspection and othernetwork security measures.

 If your organization is large enough to afford the resources of a private cloud, yourrisks will decrease assuming you have a true private cloud that is internal to yournetwork.
 In some cases, a private cloud located at a cloud provider’s facility can helpmeet your security requirements but will depend on the provider capabilitiesand maturity.

 You can reduce your confidentiality risks by using encryption; specifically by usingvalidated implementations of cryptography for data-in-transit.
 Secure digital signatures make it much more difficult, if not impossible, forsomeone to tamper with your data, and this ensures data integrity.

 Availability problems at the network level are far more difficult to mitigate withcloud computing unless your organization is using a private cloud that is internal toyour network topology.
 Even if your private cloud is a private (i.e., non-shared) external network at acloud provider’s facility, you will face increased risk at the network level. Apublic cloud faces even greater risk.

 Even large enterprises with significant resources face considerable challenges at the
network level of infrastructure security.
 Are the risks associated with cloud computing actually higher than the risksenterprises are facing today? Consider existing private and public extranets,and take into account partner connections when making such a comparison.
 For large enterprises without significant resources, or for small to medium-size businesses (SMBs), is the risk of using public clouds (assuming that suchenterprises lack the resources necessary for private clouds) really higher thanthe risks inherent in their current infrastructures? In many cases, the answeris probably no—there is not a higher level of risk.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 203

Table 5.1 Security Control at the network level

5.5 Infrastructure security: Host levelWhen reviewing host security and assessing risks consider the context of cloudservices delivery models (SaaS, PaaS, and IaaS) and deployment models (public, private, andhybrid).
 Some virtualization security threats such as VM escape, system configuration drift,and insider threats by way of weak access control to the hypervisor carry into thepublic cloud computing environment.
 The dynamic nature (elasticity) of cloud computing bring new operational

challenges from a security management perspective.
 The operational model motivates rapid provisioning and fleeting instances ofVMs. Managing vulnerabilities and patches is therefore much harder than justrunning a scan, as the rate of change is much higher than in a traditional datacenter.

 The fact that the clouds harness the power of thousands of compute nodes, combinedwith the homogeneity of the operating system employed by hosts, means the threatscan be amplified quickly and easily calls it the “velocity of attack” factor in the cloud.
5.5.1 SaaS and PaaS Host SecurityIn general, CSPs do not publicly share information related to their host platforms,host operating systems, and the processes that are in place to secure the hosts, since hackerscan exploit that information when they are trying to intrude into the cloud service.

 Hence, in the context of SaaS (e.g., Salesforce.com, Workday.com) or PaaS (e.g., GoogleApp Engine, Salesforce.com’s Force.com) cloud services, host security is solid tocustomers and the responsibility of securing the hosts is relegated to the CSP.To get assurance from the CSP on the security hygiene of its hosts, you should ask thevendor to share information under a nondisclosure agreement (NDA) or simply demand thatthe CSP share the information via a controls assessment framework such as SysTrust or ISO27002.
 From a controls assurance perspective, the CSP has to ensure that appropriatepreventive and detective controls are in place and will have to ensure the same via athird-party assessment or ISO 27002 type assessment framework.

Introduction to Grid Computing

Page 204 Under Regulation 2013 Anna University

Both the PaaS and SaaS platforms abstract and hide the host operating system from
end users with a host abstraction layer.

 One key difference between PaaS and SaaS is the accessibility of the abstraction layerthat hides the operating system services the applications consume.
 In the case of SaaS, the abstraction layer is not visible to users and is available only tothe developers and the CSP’s operations staff,
 where PaaS users are given indirect access to the host abstraction layer in the form of aPaaS application programming interface (API) that in turn interacts with the hostabstraction layer.

Host security responsibilities in SaaS and PaaS services are transferred to the CSP.
 The fact that you do not have to worry about protecting hosts from host-based securitythreats is a major benefit from a security management and cost standpoint.
 However, as a customer, you still own the risk of managing information hosted in thecloud services.
 It’s your responsibility to get the appropriate level of assurance regarding how the CSPmanages host security hygiene.

5.5.2 IaaS Host SecurityUnlike PaaS and SaaS, IaaS customers are primarily responsible for securing the hostsprovisioned in the cloud. Given that almost all IaaS services available today employvirtualization at the host layer, host security in IaaS should be categorized as follows:
Virtualization software securityThe software layer that sits on top of bare metal and provides customers the ability tocreate and destroy virtual instances.Virtualization at the host level can be accomplished using any of the virtualizationmodels, including

 OS-level virtualization (Solaris containers, BSD jails, Linux-VServer)
 Paravirtualization (a combination of the hardware version and versions of Xen andVMware)
 Hardware-based virtualization (Xen, VMware, Microsoft Hyper-V).It is important to secure this layer of software that sits between the hardware and thevirtual servers.In a public IaaS service, customers do not have access to this software layer; it ismanaged by the CSP only.

Customer guest OS or virtual server securityThe virtual instance of an operating system that is provisioned on top of thevirtualization layer and is visible to customers from the Internet; e.g., various flavors of Linux,Microsoft, and Solaris. Customers have full access to virtual servers.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 205

5.5.2.1 Virtualization software securitySince the CSP manages the virtualization software that sits on top of the hardware,customers will have neither visibility nor access to this software.
 Hardware or OS virtualization enables the sharing of hardware resources acrossmultiple guest VMs without interfering with each other so that you can safely runseveral operating systems and applications at the same time on a single computer.
 For the purpose of simplicity, we made an assumption that IaaS services are using“bare metal hypervisor” technologies.Given that hypervisor virtualization is the essential ingredient that guaranteescompartmentalization and isolation of customer VMs from each other in a multitenantenvironment, it is very important to protect the hypervisors from unauthorized users.
 Since virtualization is very critical to the IaaS cloud architecture, any attack that couldcompromise the integrity of the compartments will be catastrophic to the entirecustomer base on that cloud.
 By exploiting a zero-day vulnerability in HyperVM, a virtualization application madeby a company called Lxlabs, hackers destroyed 100,000 websites hosted byVaserv.com.The zero-day vulnerability gave the attackers the ability to execute sensitive Unixcommands on the system, including rm -rf, which forces a recursive delete of all files.
 Evidently, just days before the intrusion, an anonymous user posted on a hackerwebsite called milw0rm a long list of yet-unpatched vulnerabilities in Kloxo, a hostingcontrol panel that integrates into HyperVM.CSPs should institute the necessary security controls, including restricting physical andlogical access to hypervisor and other forms of employed virtualization layers. IaaS customersshould understand the technology and security process controls instituted by the CSP toprotect the hypervisor. This will help you to understand the compliance and gaps withreference to your host security standard, policies, and regulatory compliances. However, ingeneral, CSPs lack transparency in this area and you may have no option but to take a leap offaith and trust CSPs to provide an “isolated and secured virtualized guest OS.”

5.5.2.1.1 Threads to the hypervisorThe integrity and availability of the hypervisor are of utmost importance and arekey to guaranteeing the integrity and availability of a public cloud built on a virtualizedenvironment.A vulnerable hypervisor could expose all user domains to malicious insiders.Furthermore, hypervisors are potentially susceptible to subversion attacks.
 To illustrate the vulnerability of the virtualization layer, some members of the securityresearch community demonstrated a “Blue Pill” attack on a hypervisor. During BlackHat 2008 and Black Hat DC 2009,Joanna Rutkowska, Alexander Tereshkin, and RafalWojtczuk from Invisible Things Lab demonstrated a number of ways to compromiseXen’s virtualization.Since virtualization layers within public clouds for the most part are proprietary and

closed source, the source code of software used by CSPs is not available for scrutiny by thesecurity research community.

Introduction to Grid Computing

Page 206 Under Regulation 2013 Anna University

5.5.2.1.2 Virtual server security
 Customers of IaaS have full access to the virtualized guest VMs that are hosted andisolated from each other by hypervisor technology.

 Hence customers are responsible for securing and ongoing securitymanagement of the guest VM.
 A public IaaS, offers a web services API to perform management functions such asprovisioning, decommissioning, and replication of virtual servers on the IaaS platform.
 The dynamic life cycle of virtual servers can result in complexity if the process tomanage the virtual servers is not automated with proper procedures.

 From an attack surface perspective, the virtual server (Windows, Solaris, orLinux) may be accessible to anyone on the Internet, so sufficient networkaccess mitigation steps should be taken to restrict access to virtual instances.
 The cloud management API adds another layer of attack surface and must be includedin the scope of securing virtual servers in the public cloud.
 Some of the new host security threats in the public IaaS include:

 Stealing keys used to access and manage hosts (e.g., SSH private keys)
 Attacking un patched, vulnerable services listening on standard ports (e.g., FTP,NetBIOS,SSH)
 Hijacking accounts that are not properly secured (i.e., weak or no passwordsfor standard accounts)
 Attacking systems that are not properly secured by host firewalls
 Deploying Trojans embedded in the software component in the VM or withinthe VM image (the OS) itself

5.5.2.2 Securing Virtual serverSecuring the virtual server in the cloud requires strong operational securityprocedures coupled with automation of procedures. Here are some recommendations:
 Use a secure-by-default configuration. Harden your image and use a standardhardened image for instantiating VMs (the guest OS) in a public cloud. A best practicefor cloud based applications is to build custom VM images that have only thecapabilities and services necessary to support the application stack. Limiting thecapabilities of the underlying application stack not only limits the host’s overall attacksurface, but also greatly reduces the number of patches needed to keep thatapplication stack secure.
 Track the inventory of VM images and OS versions that are prepared for cloudhosting. The IaaS provider provides some of these VM images. When a virtual imagefrom the IaaS provider is used it should undergo the same level of security verificationand hardening for hosts within the enterprise. The best alternative is to provide yourown image that conforms to the same security standards as internal trusted hosts.
 Protect the integrity of the hardened image from unauthorized access.
 Safeguard the private keys required to access hosts in the public cloud.
 Isolate the decryption keys from the cloud where the data is hosted unless they arenecessary for decryption, and then only for the duration of an actual decryptionactivity. If your application requires a key to encrypt and decrypt for continuous data

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 207

processing, it may not be possible to protect the key since it will be collocated with theapplication.
 Include no authentication credentials in your virtualized images except for a key todecrypt the file 6system key.
 Do not allow password-based authentication for shell access.
 Require passwords for sudo or role-based access (e.g., Solaris, SELinux).
 Run a host firewall and open only the minimum ports necessary to support theservices on an instance.
 Run only the required services and turn off the unused services (e.g., turn off FTP,print services, network file services, and database services if they are not required).
 Install host-based IDS such as OSSEC or Samhain.
 Enable system auditing and event logging, and log the security events to a dedicatedlog server. Isolate the log server with higher security protection, including accessingcontrols.
 If you suspect a compromise, shut down the instance, snapshot your block volumes,and back up the root file system. You can perform forensics on an uncompromisedsystem later.
 Institute a process for patching the images in the cloud—both offline andinstantiated images.
 Periodically review logs for suspicious activities.
 Table 5.2 lists security controls at the host level.

Table 5.2 Security controls at the host levels

5.6 Infrastructure security: Application level
 Designing and implementing applications targeted for deployment on a cloud platformwill require that existing application security programs reevaluate current practicesand standards.
 The application security ranges from standalone single-user applications tosophisticated multiuser e-commerce applications used by millions of users.
 Web applications such as content management systems (CMSs), wikis, portals, bulletinboards, and discussion forums are used by small and large organizations.
 A large number of organizations also develop and maintain custom-built webapplications for their businesses using various web frameworks.
 Advances in cross-site scripting (XSS) attacks have demonstrated that criminalslooking for financial gain can exploit vulnerabilities resulting from web programmingerrors as new ways to penetrate important organizations.

Introduction to Grid Computing

Page 208 Under Regulation 2013 Anna University

Since the browser has emerged as the end user client for accessing in-cloudapplications, it is important for application security programs to include browser security intothe scope of application security. Together they determine the strength of end-to-end cloudsecurity that helps protect the confidentiality, integrity, and availability of the informationprocessed by cloud services.
5.6.1 Application –level security threadsWeb application vulnerabilities in open source as well as custom-built applicationsaccounted for almost half the total number of vulnerabilities discovered between November2006 and October 2007.

 The existing threats exploit well-known application vulnerabilities including
 cross-site scripting (XSS),
 SQL injection,
 malicious file execution, and
 Other vulnerabilities resulting from programming errors and design flaws.

 Armed with knowledge and tools, hackers are constantly scanning web applicationsfor application vulnerabilities.
 They are then exploiting the vulnerabilities they discover for various illegal activitiesincluding

 financial fraud,
 intellectual property theft,
 converting trusted websites into malicious servers serving client-side exploits,
 and phishing scams.

 All web frameworks and all types of web applications are at risk of web applicationsecurity defects, ranging from insufficient validation to application logic errors.
 It has been a common practice to use a combination of perimeter security controls

and network- and host-based access controls to protect web applications deployedin a tightly controlled environment, including corporate intranets and private clouds,from external hackers.
 Web applications built and deployed in a public cloud platform will be subjected to ahigh threat level, attacked, and potentially exploited by hackers to support fraudulentand illegal activities.In that threat model, web applications deployed in a public cloud (the SPI model) mustbe designed for an Internet threat model, and security must be embedded into the SoftwareDevelopment Life Cycle (SDLC); see Figure 5.8.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 209

Figure 5.8 The SDLC

5.6.2 DoS and EDoS
 DoS and DDoS attacks that can potentially disrupt cloud services for an extended time.
 These attacks typically originate from compromised computer systems attached to theInternet

 routinely,
 hackers hijack and control computers infected by way ofviruses/worms/malware and,
 in some cases, powerful unprotected servers

 Application-level DoS attacks could manifest themselves as high-volume web pagereloads, XML web services requests (over HTTP or HTTPS), or protocol-specificrequests supported by a cloud service.
 Since these malicious requests blend with the legitimate traffic, it is extremely difficultto selectively filter the malicious traffic without impacting the service as a whole.

 For example, a DDoS attack on Twitter on August 6, 2009, brought the servicedown for several hours (see Figure 5.9).Apart from disrupting cloud services, resulting in poor user experience and service-level impacts, DoS attacks can quickly drain your company’s cloud services budget.
 DoS attacks on pay-as-you-go cloud applications will result in a dramatic increase inyour cloud utility bill: you’ll see increased use of network bandwidth, CPU, and storageconsumption. This type of attack is also being characterized as economic denial of

sustainability (EDoS).
 The low barriers for small and medium-size enterprises to adopt cloud computing forlegitimate use are also leveling the field for hackers.
 Using hijacked or exploited cloud accounts, hackers will be able to link togethercomputing resources to achieve massive amounts of computing without any of thecapital infrastructure costs.

Introduction to Grid Computing

Page 210 Under Regulation 2013 Anna University

Figure 5.9 DoS attack on Twitter

5.6.3 End user security
 A customer of a cloud service, are responsible for end user security tasks like securityprocedures to protect your Internet-connected PC—and for practicing “safe surfing.”
 Protection measures include use of security software, such as anti-malware, antivirus,personal firewalls, security patches, and IPS-type software on your Internet-connectedcomputer.
 The new mantra of “the browser is your operating system” appropriately conveys themessage that browsers have become the ubiquitous “operating systems” forconsuming cloud services.
 All Internet browsers routinely suffer from software vulnerabilities that make themvulnerable to end user security attacks.

o Hence, our recommendation is that cloud customers take appropriate steps toprotect browsers from attacks.
o To achieve end-to-end security in a cloud, it is essential for customers tomaintain good browser hygiene. The means keeping the browser (e.g., InternetExplorer, Firefox, Safari) patched and updated to mitigate threats related tobrowser vulnerabilities.

 Currently, although browser security add-ons are not commercially available, usersare encouraged to frequently check their browser vendor’s website for securityupdates, use the auto-update feature, and install patches on a timely basis to maintainend user security.
5.7 Aspects of data security
With regard to data-in-transit, the primary risk is in not using a vetted encryption
algorithm.

 It is also important to ensure that a protocol provides confidentiality as well as
integrity (e.g., FTP over SSL [FTPS], Hypertext Transfer Protocol Secure [HTTPS], and

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 211

Secure Copy Program [SCP])—particularly if the protocol is used for transferring dataacross the Internet.
 Encrypting data and using a non-secured protocol (e.g., “vanilla” or “straight” FTPor HTTP) can provide confidentiality, but does not ensure the integrity of the data (e.g.,with the use of symmetric streaming ciphers).

Using encryption to protect data-at-rest might seem obvious, the reality is not that
simple.

 If you are using an IaaS cloud service (public or private) for simple storage encryptingdata-at-rest is possible and is strongly suggested.
 However, encrypting data-at-rest that a PaaS or SaaS cloud-based application is using(e.g., Google Apps, Salesforce.com) as a compensating control is not always feasible.
 Data-at-rest used by a cloud-based application is generally not encrypted, becauseencryptionwould prevent indexing or searching of that data.

Data, when processed by a cloud-based application or stored for use by a cloud-based
application, is commingled with other users’ data.

 Although applications are often designed with features such as data tagging to preventunauthorized access to commingled data, unauthorized access is still possible throughsome exploit of application vulnerability.
 Although some cloud providers have their applications reviewed by third parties orverified with third-party application security tools, data is not on a platform dedicatedsolely to one organization.

An organization’s data-in-transit might be encrypted during transfer to and from a
cloud provider, and its data-at-rest might be encrypted if using simple storage.

 Organization’s data is definitely not encrypted if it is processed in the cloud (public orprivate).
 For any application to process data, that data must be unencrypted.
 Therefore, unless the data is in the cloud for only simple storage, the data will beunencrypted during at least part of its life cycle in the cloud—processing at aminimum.

o In June 2009, IBM announced that one of its researchers, working with agraduate student from Stanford University, had developed a fullyhomomorphic encryption scheme which allows data to be processedwithout being decrypted. This is a huge advance in cryptography, and it willhave a significant positive impact on cloud computing as soon as it moves intoWhether the data an organization has put into the cloud is encrypted or not, itis useful and might be required to know exactly where and when the data wasspecifically located within the cloud.For example, the data might have been transferred to a cloud provider, such asAmazon Web Services (AWS), on date x1 at time y1 and stored in a bucket on Amazon’s S3 inexample1.s3.amazonaws.com, then processed on date x2 at time y2 on an instance being usedby an organization on Amazon’s Elastic Compute Cloud (EC2) in ec2-67-202-51-223.compute-1.amazonaws.com, then restored in another bucket, example2.s3.amazonaws.com, before

Introduction to Grid Computing

Page 212 Under Regulation 2013 Anna University

being brought back into the organization for storage in an internal data warehouse belongingto the marketing operations group on date x3 at time y3.
Data lineageFollowing the path of data mapping application data flows or data path visualization isknown as data lineage, and it is important for an auditor’s assurance (internal, external, andregulatory). However, providing data lineage to auditors or management is time-consuming,even when the environment is completely under an organization’s control. Trying to provideaccurate reporting on data lineage for a public cloud service is really not possible. In thepreceding example, on what physical system is that bucket on example1.s3.amazonaws.com,and specifically where is (or was) that system located? What was the state of that physicalsystem then, and how would a customer or auditor verify that information?
Proving data provenanceEven if data lineage can be established in a public cloud, for some customers there is aneven more challenging requirement and problem: proving data provenance—not just provingthe integrity of the data, but the more specific provenance of the data.There is an important difference between the two terms.

 Integrity of data refers to data that has not been changed in an unauthorized manneror by an unauthorized person.
 Provenance means not only that the data has integrity, but also that it iscomputationally accurate; that is, the data was accurately calculated.For example, consider the following financial equation:SUM ((((2*3)*4)/6)−2) = $2.00With that equation, the expected answer is $2.00. If the answer were different, there would bean integrity problem. Of course, the assumption is that the $2.00 is in U.S. dollars, but theassumption could be incorrect if a different dollar is used with the following associatedassumptions:
 The equation is specific to the Australian, Bahamian, Barbadian, Belize, Bermudian,Brunei, Canadian, Cayman Islands, Cook Islands, East Caribbean, Fijian, Guyanese,Hong Kong, Jamaican, Kiribati, Liberian, Namibian, New Zealand, Samoan, Singapore,Solomon Islands, Surinamese, New Taiwan, Trinidad and Tobago, Tuvaluan, orZimbabwean dollar.
 The dollar is meant to be converted from another country’s dollars into U.S. dollars.
 The correct exchange rate is used and the conversion is calculated correctly and can beproven.In this example, if the equation satisfies those assumptions, the equation has integrity but notprovenance.

Data remanenceA final aspect of data security is data remanence. “Data remanence is the residualrepresentation of data that has been in some way nominally erased or removed. This residuemay be due to data being left intact by a nominal delete operation, or through physicalproperties of the storage medium. Data remanence may make inadvertent disclosure of

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 213

sensitive information possible, should the storage media be released into an uncontrolledenvironment (e.g., thrown in the trash, or given to a third party).
 The risk posed by data remanence in cloud services is that an organization’s data canbe inadvertently exposed to an unauthorized party—regardless of which cloud serviceyou are using (SaaS, PaaS, or IaaS).In spite of the increased importance of data security, the attention that cloud service providers(CSPs) pay to data remanence is strikingly low. Many do not even mention data remanence intheir services.

The two approved methods of data (destruction) security, but does not provideany specific requirements for how these two methods are to be achieved, nor does it provideany standards for how these methods are to be accomplished.
Data remanence is limited to three paragraphs:

“Clearing and Sanitization”- Instructions on clearing, sanitization, and release ofinformation systems (IS) media shall be issued by the accrediting Cognizant Security Agency(CSA).
 “Clearing”- Clearing is the process of eradicating the data on media before reusing themedia in an environment that provides an acceptable level of protection for the datathat was on the media before clearing. All internal memory, buffer, or other reusablememory shall be cleared to effectively deny access to previously stored information.
 “Sanitization”- Sanitization is the process of removing the data from media beforereusing the media in an environment that does not provide an acceptable level ofprotection for the data that was on the media before sanitizing. IS resources shall besanitized before they are released from classified information controls or released foruse at a lower classification level.

5.7.1 Data security migration
 If prospective customers of cloud computing services expect that data security willserve as compensating controls for possibly weakened infrastructure security,

o since part of a customer’s infrastructure security moves beyond its control and
o a provider’s infrastructure security may (for many enterprises) or may not (forsmall to medium-size businesses, or SMBs) be less robust than expectations,you will be disappointed.

 Although data-in-transit can and should be encrypted, any use of that data in the cloud,beyond simple storage, requires that it be decrypted.Therefore, it is almost certain that in the cloud, data will be unencrypted. And if youare using a PaaS-based application or SaaS, customer-unencrypted data will also almostcertainly be hosted in a multitenancy environment (in public clouds). Add to that exposure thedifficulties in determining the data’s lineage, data provenance where necessary and even manyproviders’ failure to adequately address such a basic security concern as data remanence, andthe risks of data security for customers are significantly increased.The only viable option for mitigation is to ensure that any sensitive or regulated
data is not placed into a public cloud (or that you encrypt data placed into the cloud forsimple storage only). It may be that those economics change and that providers offer their

Introduction to Grid Computing

Page 214 Under Regulation 2013 Anna University

current services, as well as a “regulatory cloud environment” (i.e., an environment wherecustomers are willing to pay more for enhanced security controls to properly handle sensitiveand regulated data). Currently, the only viable option for mitigation is to ensure that anysensitive or regulated data is not put into a public cloud.
5.7.2 Provider data and its securityIn addition to the security of your own customer data, customers should also beconcerned about what data the provider collects and how the CSP protects

 customer data,
 what metadata does the provider have about your data,
 how is it secured, and
 What access do you, the customer, have to that metadata?
 As your volume of data with a particular provider increases, so does the value of thatmetadata.Additionally, provider collects and must protect a huge amount of security-related data.
 At the network level, your provider should be collecting, monitoring, and protectingfirewall, intrusion prevention system (IPS), security incident and event management(SIEM), and router flow data.
 At the host level your provider should be collecting system log files, and at theapplication level SaaS providers should be collecting application log data, includingauthentication and authorization information.What data your CSP collects and how it monitors and protects that data is important to theprovider for its own audit purposes. Additionally, this information is important to bothproviders and customers in case it is needed for incident response and any digital forensicsrequired for incident analysis.

5.7.3 StorageFor data stored in the cloud (i.e., storage-as-a-service), we are referring to IaaS and notdata associated with an application running in the cloud on PaaS or SaaS. The same threeinformation security concerns are associated with this data stored in the as with data storedelsewhere: confidentiality, integrity, and availability.
5.7.4 ConfidentialityWhen it comes to the confidentiality of data stored in a public cloud have two potentialconcerns.

 First, what access control exists to protect the data? Access control consists of bothauthentication and authorization. CSPs generally use weak authentication mechanisms(e.g., username + password), and the authorization (“access”) controls available tousers tend to be quite coarse and not very granular.
 For large organizations, this coarse authorization presents significant securityconcerns unto itself.

 Often, the only authorization levels cloud vendors provide are administratorauthorization (i.e., the owner of the account itself) and

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 215

 user authorization (i.e., all other authorized users)—with no levels in between(e.g., business unit administrators, who are authorized to approve access fortheir own business unit personnel)
 Second, how is the data that is stored in the cloud actually protected? For allpractical purposes, protection of data stored in the cloud involves the use ofencryption. So, is a customer’s data actually encrypted when it is stored in the cloud?And if so, with what encryption algorithm, and with what key strength?
 If a CSP does encrypt a customer’s data, the next consideration concerns what

encryption algorithm it uses.Although the example in Figure 5.10 is related to email, the same concept (i.e., a singleshared, secret key) is used in data storage encryption.

Figure 5.10 symmetric Encryption

Although the example in Figure 5.11 is related to email, the same concept (i.e., a publickey and a private key) is not used in data storage encryption.

Figure 5.11 Asymmetric Encryption

 The next consideration for you is what key length is used.
 Another confidentiality consideration for encryption is key management. How are theencryption keys that are used going to be managed—and by whom? Are you going tomanage your own keys?

Introduction to Grid Computing

Page 216 Under Regulation 2013 Anna University

“Recommendation for Key Management”:
 “Part 1: General”
 “Part 2: Best Practices for Key Management Organization”
 “Part 3: Application-Specific Key Management Guidance (Draft)”Key management is complex and difficult for a single customer, it is even morecomplex and difficult for CSPs to try to properly manage multiple customers’ keys.

5.7.5 IntegrityConfidentiality does not imply integrity; data can be encrypted for confidentialitypurposes, and yet you might not have a way to verify the integrity of that data. Encryptionalone is sufficient for confidentiality, but integrity also requires the use of messageauthentication codes (MACs).
 The simplest way to use MACs on encrypted data is to use a block symmetric algorithmin cipher block chaining (CBC) mode, and to include a one-way hash function.
 that not all providers encrypt customer data, especially for PaaS and SaaS services.Another aspect of data integrity is important, especially with bulk storage using IaaS. Oncea customer has several gigabytes (or more) of its data up in the cloud for storage, how does thecustomer check on the integrity of the data stored there?
 There are IaaS transfer costs associated with moving data into and back down from thecloud, as well as network utilization (bandwidth) considerations for the customer’sown network.
 What a customer really wants to do is to validate the integrity of its data while thatdata remains in the cloud without having to download and reupload that data.This task is even more difficult because it must be done in the cloud without explicitknowledge of the whole data set. Customers generally do not know on which physicalmachines their data is stored, or where those systems are located. Additionally, that data set isprobably dynamic and changing frequently. Those frequent changes obviate the effectivenessof traditional integrity insurance techniques.What is needed instead is a proof of retrievability—that is, a mathematical way to verifythe integrity of the data as it is dynamically stored in the cloud.

5.7.6 AvailabilityAssuming that a customer’s data has maintained its confidentiality and integrity, you mustalso be concerned about the availability of your data. There are currently three major threatsin this regard none of which are new to computing, but all of which take on increasedimportance in cloud computing because of increased risk.
 The first threat to availability is network-based attacks.
 The second threat to availability is the CSP’s own availability.
 Finally, prospective cloud storage customers must be certain to ascertain just whatservices their provider is actually offeringAll three of these considerations (confidentiality, integrity, and availability) should beencapsulated in a CSP’s service-level agreement (SLA) to its customers. However, at this time,CSP SLAs are extremely weak—in fact, for all practical purposes, they are essentially

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 217

worthless. Even where a CSP appears to have at least a partially sufficient SLA, how that SLAactually gets measured is problematic.
5.8 Introduction to Identity and access management architectureIdentity and Access management (IAM) and support for IAM features that aid inAuthentication, Authorization, and Auditing (AAA) of users accessing cloud services.Traditionally, organizations invest in IAM practices to improve operational efficiency and tocomply with regulatory, privacy, and data protection requirements:

Improve operational efficiency: Properly architected IAM technology and processescan improve efficiency by automating user on-boarding and other repetitive tasks (e.g., self-service for users requesting password resets that otherwise will require the intervention ofsystem administrators using a help desk ticketing system).
Regulatory compliance management: To protect systems, applications, andinformation from internal and external threats (e.g., disgruntled employees deleting sensitivefiles) and to comply with various regulatory, privacy, and data protection requirements (e.g.,HIPAA, SOX), organizations implement an “IT general and application-level controls”framework derived from industry standard.In addition to improving operational efficiencies and effective compliancemanagement, IAM can enable new IT delivery and deployment models. Some of the cloud usecases that require IAM support from the CSP include:

 Employees and on-site contractors of an organization accessing a SaaS service usingidentity federation.
 IT administrators accessing the CSP management console to provision resources andaccess for users using a corporate identity.
 Developers creating accounts for partner users in a PaaS platform.
 End users accessing storage service in the cloud (e.g., Amazon S3) and sharing files andobjects with users, within and outside a domain using access policy managementfeatures.
 An application residing in a cloud service provider (e.g., Amazon EC2) accessingstorage from another cloud service (e.g., Mosso)

5.8.1 IAM definitionsThe basic concepts and definitions of IAM functions for any service:
Authentication: Authentication is the process of verifying the identity of a user orsystem. Authentication usually connotes a more robust form of identification. In some usecases, such as service-to-service interaction, authentication involves verifying the networkservice requesting access to information served by another service (e.g., a travel web servicethat is connecting to a credit card gateway to verify the credit card on behalf of the user).
Authorization: Authorization is the process of determining the privileges the user orsystem is entitled to once the identity is established. In the context of digital services,authorization usually follows the authentication step and is used to determine whether theuser or service has the necessary privileges to perform certain operations, authorization is theprocess of enforcing policies.

Introduction to Grid Computing

Page 218 Under Regulation 2013 Anna University

Auditing: In the context of IAM, auditing entails the process of review and examinationof authentication, authorization records, and activities to determine the adequacy of IAMsystem controls, to verify compliance with established security policies and procedures (e.g.,separation of duties), to detect breaches in security services (e.g., privilege escalation), and torecommend any changes that are indicated for countermeasures.
5.8.2 IAM functional architecture and PracticesIAM is not a monolithic solution that can be easily deployed to gain capabilitiesimmediately. It is as much an aspect of architecture (see Figure 5.12) as it is a collection oftechnology components, processes, and standard practices.

Figure 5.12 Enterprise IAM functional architectureStandard enterprise IAM architecture encompasses several layers of technology, services,and processes.
 At the core of the deployment architecture is a directory service (such as LDAP orActive Directory) that acts as a repository for the identity, credential, and userattributes of the organization’s user pool.
 The directory interacts with IAM technology components such as authentication, usermanagement, provisioning, and federation services that support the standard IAMpractice and processes within the organization.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 219

 It is not uncommon for organizations to use several directories that were deployed forenvironment-specific reasons or that were integrated into the environment by way ofbusiness mergers and acquisitions.
The IAM processes to support the business can be broadly categorized as follows:

 User management- Activities for the effective governance and management ofidentity life cycles.
 Authentication management- Activities for the effective governance andmanagement of the process for determining that an entity is who or what it claims tobe.
 Authorization management- Activities for the effective governance and managementof the process for determining entitlement rights that decide what resources an entityis permitted to access in accordance with the organization’s policies.
 Access management- Enforcement of policies for access control in response to arequest from an entity (user, services) wanting to access an IT resource within theorganization
 Data management and provisioning - Propagation of identity and data forauthorization to IT resources via automated or manual processes.
 Monitoring and auditing- Monitoring, auditing, and reporting compliance by usersregarding access to resources within the organization based on the defined policies.

IAM processes support the following operational activities:
Provisioning

 This is the process of on-boarding users to systems and applications.
 These processes provide users with necessary access to data and technologyresources.
 The term typically is used in reference to enterprise-level resource management.
 Provisioning can be thought of as a combination of the duties of the human resourcesand IT departments, where users are given access to data repositories or systems,applications, and databases based on a unique user identity.
 Deprovisioning works in the opposite manner, resulting in the deletion or deactivationof an identity or of privileges assigned to the user identity.

Credential and attribute management
 These processes are designed to manage the life cycle of credentials and userattributes create issue, manage, and revoke to minimize the business risk associatedwith identity impersonation and inappropriate account use.
 Credentials are usually bound to an individual and are verified during theauthentication process.
 The processes include provisioning of attributes, static (e.g., standard text password)and dynamic (e.g., one-time password) credentials that comply with a passwordstandard (e.g., passwords resistant to dictionary attacks), handling passwordexpiration, and encryption management of credentials during transit and at rest, and

Introduction to Grid Computing

Page 220 Under Regulation 2013 Anna University

access policies of user attributes (privacy and handling of attributes for variousregulatory reasons).
Entitlement management

 Entitlements are also referred to as authorization policies.
 The processes in this domain address the provisioning and deprovisioning ofprivileges needed for the user to access resources including systems, applications, anddatabases.
 Proper entitlement management ensures that users are assigned only the requiredprivileges (least privileges) that match with their job functions.
 Entitlement management can be used to strengthen the security of web services, webapplications, legacy applications, documents and files, and physical security systems.

Compliance management
 This process implies that access rights and privileges are monitored and tracked toensure the security of an enterprise’s resources.
 The process also helps auditors verify compliance to various internal access controlpolicies, and standards that include practices such as segregation of duties, accessmonitoring, periodic auditing, and reporting.
 An example is a user certification process that allows application owners to certify thatonly authorized users have the privileges necessary to access business-sensitiveinformation.

Identity federation management
 Federation is the process of managing the trust relationships established beyond theinternal network boundaries or administrative domain boundaries among distinctorganizations.
 A federation is an association of organizations that come together to exchangeinformation about their users and resources to enable collaborations and transactions(e.g., sharing user information with the organizations’ benefits systems managed by athird-party provider).
 Federation of identities to service providers will support SSO to cloud services.

Centralization of authentication (authN) and authorization (authZ)
 A central authentication and authorization infrastructure alleviates the need forapplication developers to build custom authentication and authorization features intotheir applications.
 Furthermore, it promotes a loose coupling architecture where applications becomeagnostic to the authentication methods and policies.
 This approach is also called an “externalization of authN and authZ” fromapplications.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 221

Figure 5.13 illustrates the identity life cycle management phases.

Figure 5.13 Identity life cycle

5.9 IAM practices in the cloudIn the current state of IAM technology, standards support by CSPs (SaaS, PaaS, andIaaS) is not consistent across providers. Although large providers such as Google, Microsoft,and Salesforce.com seem to demonstrate basic IAM capabilities, our assessment is that theystill fall short of enterprise IAM requirements for managing regulatory, privacy, and dataprotection requirements. Table 5.3 illustrates the current maturity model, based on theauthors’ assessment, generalized across SPI service delivery models.
Level SaaS PaaS IaaSUser management, new users Capable Immature AwareUser management, user modifications Capable Immature ImmatureAuthentication Management Capable Aware CapableAuthorization management Aware Immature Immature
Table 5.3 comparison of SPI maturity models in the context of IAMThe maturity model takes into account the dynamic nature of IAM users, systems, andapplications in the cloud and addresses the four key components of the IAM automationprocess:

 User Management, New Users
 User Management, User Modifications
 Authentication Management
 Authorization Management

Introduction to Grid Computing

Page 222 Under Regulation 2013 Anna University

Figure 5.14 defines the maturity levels as they relate to the four key components.

Figure 5.14 Comparison of maturity levels for IAM componentsBy matching the model’s descriptions of various maturity levels with the cloud servicesdelivery model’s (SaaS, PaaS, IaaS) current state of IAM, a clear picture emerges of IAMmaturity across the four IAM components. If, for example, the service delivery model (SPI) is“immature” in one area but “capable” or “aware” in all others, the IAM maturity model can helpfocus attention on the area most in need of attention.The principles and purported benefits of established enterprise IAM practices andprocesses are applicable to cloud services, they need to be adjusted to the cloud environment.Broadly speaking, user management functions in the cloud can be categorized as follows:

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 223

 Cloud identity administration
 Federation or SSO
 Authorization management
 Compliance management

5.9.1 Cloud identity administrationCloud identity administrative functions should focus on life cycle management of useridentities in the cloud
 provisioning
 Deprovisioning
 identity federation
 SSO
 password or credentials management
 Profile management, and administrative management.Organizations that are not capable of supporting federation should explore cloud-basedidentity management services.
 This new breed of services usually synchronizes an organization’s internal directorieswith its directory (usually multitenant) and acts as a proxy IdP for the organization.
 By federating identities using either an internal Internet-facing IdP or a cloud identitymanagement service provider, organizations can avoid duplicating identities andattributes and storing them with the CSP.

5.9.2 Federated identityOrganizations planning to implement identity federation that enables SSO for users cantake one of the following two paths (architectures):
 Implement an enterprise IdP within an organization perimeter.
 Integrate with a trusted cloud-based identity management service provider.Both architectures have pros and cons.

5.9.2.1 Enterprise Identity providerIn this architecture, cloud services will delegate authentication to an organization’s IdP.
 In this delegated authentication architecture, the organization federates identitieswithin a trusted circle of CSP domains.
 A circle of trust can be created with all the domains that are authorized to delegateauthentication to the IdP.Figure 5.15 illustrates the IdP deployment architecture.

Introduction to Grid Computing

Page 224 Under Regulation 2013 Anna University

Figure 5.15 Identity provider deployment architecture

Here are the specific pros and cons of this approach:
ProsOrganizations can leverage the existing investment in their IAM infrastructure and extendthe practices to the cloud. For example, organizations that have implemented SSO forapplications within their data center exhibit the following benefits:

 They are consistent with internal policies, processes, and access managementframeworks.
 They have direct oversight of the service-level agreement (SLA) and security of the IdP.
 They have an incremental investment in enhancing the existing identity architecture tosupport federation.

Cons By not changing the infrastructure to support federation, new inefficiencies can resultdue to the addition of life cycle management for non-employees such as customers.
5.9.2.2 Identity management as a serviceIn this architecture, cloud services can delegate authentication to an identity management-asa- service (IDaaS) provider.

 In this model, organizations outsource the federated identity management technologyand user management processes to a third-party service provider.
 the organization might benefit from an outsourced multiprotocol federation gateway(identity federation service) if it has to interface with many different partners andcloud service federation schemes.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 225

 In cases where credentialing is difficult and costly, an enterprise might also outsourcecredential issuance (and background investigations) to a service providerThis is a SaaS model for identity management, where the SaaS IdP stores identities in a“trusted identity store” and acts as a proxy for the organization’s users accessing cloudservices, as illustrated in Figure 5.16. The identity store in the cloud is kept in sync with thecorporate directory through a provider proprietary scheme

Figure 5.16 Identity management as a service (IDaaS)

Here are the specific pros and cons of this approach:
ProsDelegating certain authentication use cases to the cloud identity management servicehides the complexity of integrating with various CSPs supporting different federationstandards.

 Case in point: Salesforce.com and Google support delegated authentication usingSAML. However, as of this writing, they support two different versions of SAML: GoogleApps supports only SAML 2.0, and Salesforce.com supports only SAML 1.1. Cloudbasedidentity management services that support both SAML standards (multiprotocolfederation gateways) can hide this integration complexity from organizations adoptingcloud services.There is little need for architectural changes to support this model.Once identity synchronization between the organization directory or trusted system of recordand the identity service directory in the cloud is set up, users can sign on to cloud servicesusing corporate identity, credentials (both static and dynamic), and authentication policies.
ConsRely on a third party for an identity management service; you may have less visibility intothe service, including implementation and architecture details.

 Hence, the availability and authentication performance of cloud applications hinges onthe identity management service provider’s SLA, performance management, and

Introduction to Grid Computing

Page 226 Under Regulation 2013 Anna University

availability. It is important to understand the provider’s service level, architecture,service redundancy, and performance guarantees of the identity management serviceprovider.Another drawback to this approach is that it may not be able to generate customreports to meet internal compliance requirements.In addition, identity attribute management can also become complex when identityattributes are not properly defined and associated with identities.New governance processes may be required to authorize various operations(add/modify/remove attributes) to govern user attributes that move outside theorganization’s trust boundary. Identity attributes will change through the life cycle of theidentity itself and may get out of sync.
5.9.3 Cloud authorization managementMedium-size and large organizations usually have specific requirements forauthorization features for their cloud users. Most cloud services support at least dual roles(privileges): administrator and end user. It is a normal practice among CSPs to provision theadministrator role with administrative privileges. These privileges allow administrators toprovision and deprovision identities, basic attribute profiles, and, in some cases, to set accesscontrol policies such as password strength and trusted networks from which connections areaccepted.
5.10 SaaS, PaaS, IaaS availability in the cloud: Factors Impacting availabilityThe cloud service resiliency and availability depend on a few factors, including the CSP’sdata center architecture (load balancers, networks, systems), application architecture, hostinglocation redundancy, diversity of Internet service providers (ISPs), and data storagearchitecture. Following is a list of the major factors:

 SaaS and PaaS application architecture and redundancy.
 Cloud service data center architecture, and network and systems architecture,including geographically diverse and fault-tolerance architecture.
 Reliability and redundancy of Internet connectivity used by the customer and the CSP.
 Customer’s ability to respond quickly and fall back on internal applications and otherprocesses, including manual procedures.
 Customer’s visibility of the fault. In some downtime events, if the impact affects a smallsubset of users, it may be difficult to get a full picture of the impact and can make itharder to troubleshoot the situation.
 Reliability of hardware and software components used in delivering the cloud service.
 Efficacy of the security and network infrastructure to withstand a distributed denial ofservice (DDoS) attack on the cloud service.
 Efficacy of security controls and processes that reduce human error and protectinfrastructure from malicious internal and external threats, e.g., privileged usersabusing privileges.

5.10.1 SaaS availability management

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 227

SaaS service providers are responsible for business continuity, application, andinfrastructure security management processes. This means the tasks your IT organizationonce handled will now be handled by the CSP.Challenges of governance of SaaS services as they try to map internal service-levelcategories to a CSP.
 For example, if a marketing application is considered critical and has a high service-level requirement, how can the IT or business unit meet the internal marketingdepartment’s availability expectation based on the SaaS provider’s SLA? In some cases,SaaS vendors may not offer SLAs and may simply address service terms via terms andconditions.
 Example: CRM SaaS provider, NetSuite, offers the following SLA clauses:

 Uptime Goal—NetSuite commits to provide 99.5% uptime with respectto the NetSuite application, excluding regularly scheduled maintenancetimes.
 Scheduled and Unscheduled Maintenance Regularly scheduledmaintenance time does not count as downtime. Maintenance time isregularly scheduled if it is communicated at least two full business daysin advance of the maintenance time. Regularly scheduled maintenancetime typically is communicated at least a week in advance, scheduled tooccur at night on the weekend, and takes less than 10–15 hours eachquarter.
 NetSuite hereby provides notice that every Saturday night 10:00pm–10:20pm Pacific Time is reserved for routine scheduledmaintenance for use as needed.There is no such thing as standard SLA among cloud service providers. Uptimeguarantee, service credits, and service exclusions clauses will vary from provider to provider.

Customer Responsibility
 Customers should understand the SLA and communication methods (e.g., email, RSSfeed, website URL with outage information) to stay informed on service outages.

o When possible, customers should use automated tools such as Nagios orSiteuptime.com to verify the availability of the SaaS service.
 Customers of a SaaS service have a limited number of options to support availabilitymanagement.

o Hence, customers should seek to understand the availability managementfactors, including the SLA of the service, and clarify with the CSP any gaps inSLA exclusions and service credits when disruptions occur.
 The efficacy of SaaS SLAs was analyzed in the context of software vendors moving to aSaaS delivery model.

o The paper concluded that certain elements are necessary to make the SLA aneffective document, and states that: Communication and clear expectations arerequired from both the service provider and their customers to identify what isimportant and realistic with respect to standards and expectations.

Introduction to Grid Computing

Page 228 Under Regulation 2013 Anna University

 Customers of cloud services should note that a multitenant service delivery model isusually designed with a “one size fits all” operating principle
o This means CSPs typically offer a standard SLA for all customers. Thus, CSPsmay not be amenable to providing custom SLAs if the standard SLA does notmeet your service-level requirements.

 Since most SaaS providers use virtualization technologies to deliver a multitenantservice, customers should also understand how resource democratization occurswithin the CSP to best predict the likelihood of system availability and performanceduring business fluctuations.
o If the resources (network, CPU, memory, storage) are not allocated in a fairmanner across the tenants to perform the workload, it is conceivable that ahighly demanding tenant may starve other tenants, which can result in lowerservice levels or poor user experience.

SaaS Health MonitoringThe following options are available to customers to stay informed on the health oftheir service:
 Service health dashboard published by the CSP. Usually SaaS providers, such asSalesforce.com, publish the current state of the service, current outages that mayimpact customers, and upcoming scheduled maintenance services on their website.
 The Cloud Computing Incidents Database (CCID).
 Customer mailing list that notifies customers of occurring and recently occurredoutages.
 Internal or third-party-based service monitoring tools that periodically check SaaSprovider health and alert customers when service becomes unavailable (e.g., Nagiosmonitoring tool).
 RSS feed hosted at the SaaS service provider.

5.10.2 PaaS availability management
 In a typical PaaS service, customers (developers) build and deploy PaaS applicationson top of the CSP-supplied PaaS platform.

o The PaaS platform is typically built on a CSP owned and managed network,servers, operating systems, storage infrastructure, and application components(web services).
 Given that the customer PaaS applications are assembled with CSP-suppliedapplication components and third-party web services components (mash-upapplications), availability management of the PaaS application can be complicated.

o for example, a social network application on the Google App Engine thatdepends on a Facebook application for a contact management service.
 The customer is responsible for managing the availability of the customer developedapplication and third-party services, and the PaaS CSP is responsible for the PaaSplatform and any other services supplied by the CSP.

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 229

o For example, Force.com is responsible for the management of the AppExchange platform, and customers are responsible for managing theapplications developed and deployed on that platform.
 By design, PaaS applications may rely on other third-party web services componentsthat are not part of the PaaS service offerings

o hence, understanding the dependency of your application on third-partyservices, including services supplied by the PaaS vendor, is essential .
 PaaS providers may also offer a set of web services, including a message queue service,identity and authentication service, and database service, and your application maydepend on the availability of those service components (an example is Google’sBigTable).

o Hence, your PaaS application availability depends on the robustness of yourapplication, the PaaS platform on which the application is built, and third-partyweb services components.
 Customers are encouraged to read and understand the PaaS platform service levels (ifavailable), including quota triggers that may limit resource availability for theirapplication. Two kindsof quotas: a billable quota or a fixed quota.

o Billable quotas are resource maximums set by you, the application’sadministrator, to prevent the cost of the application from exceeding yourbudget. Every application gets an amount of each billable quota for free. Youcan increase billable quotas for your application by enabling billing, setting adaily budget, and then allocating the budget to the quotas. You will be chargedonly for the resources your app actually uses, and only for the amount ofresources used above the free quota thresholds.
o Fixed quotas are resource maximums set by the App Engine to ensure theintegrity of the system. These resources describe the boundaries of thearchitecture, and all applications are expected to run within the same limits.They ensure that another app that is consuming too many resources will notaffect the performance of your app.

Customer ResponsibilityThe PaaS application customer should carefully analyze the dependencies of theapplication on the third-party web services (components) and outline a holistic managementstrategy to manage and monitor all the dependencies.
The following considerations are for PaaS customers:

PaaS platform service levels - Customers should carefully review the terms andconditions of the CSP’s SLAs and understand the availability constraints.
Third-party web services provider service levels- When your PaaS applicationdepends on a third-party service, it is critical to understand the SLA of that service.

PaaS health Monitoring
 PaaS applications are always web-based applications hosted on the PaaS CSP platform.

Introduction to Grid Computing

Page 230 Under Regulation 2013 Anna University

o Hence, most of the techniques and processes used for monitoring a SaaSapplication also apply to PaaS applications.
 Given the composition of PaaS applications, customers should monitor theirapplication, as well as the third-party web component services.

o Configuring your management tools to monitor the health of web services willrequire the knowledge of the web services protocol (HTTP, HTTPS) and therequired protocol parameters (e.g., URI) to verify the availability of the service.
The following options are available to customers to monitor the health of their service:

 Service health dashboard published by the CSP (e.g., http://status.zoho.com)
 CCID (this database is generally community-supported, and may not reflect all CSPsand all incidents that have occurred)
 CSP customer mailing list that notifies customers of occurring and recently occurredoutages
 RSS feed for RSS readers with availability and outage information
 Internal or third-party-based service monitoring tools that periodically check yourPaaS application, as well as third-party web services that monitor your application(e.g., Nagios monitoring tool)

5.10.3 IaaS Availability Management
 Availability considerations for the IaaS delivery model should include both acomputing and storage (persistent and ephemeral) infrastructure in the cloud.

o IaaS providers may also offer other services such as account management, amessage queue service, an identity and authentication service, a databaseservice, a billing service, and monitoring services.
 Hence, availability management should take into consideration all the services that youdepend on for your IT and business needs.

o Customers are responsible for all aspects of availability management sincethey are responsible for provisioning and managing the life cycle of virtualservers.
Managing your IaaS virtual infrastructure in the cloud depends on five factors:

 Availability of a CSP network, host, storage, and support application infrastructure.This factor depends on the following:
 CSP data center architecture, including a geographically diverse and fault-tolerance architecture.
 Reliability, diversity, and redundancy of Internet connectivity used by thecustomer and the CSP.
 Reliability and redundancy architecture of the hardware and softwarecomponents used for delivering compute and storage services.
 Availability management process and procedures, including business continuityprocesses established by the CSP.
 Web console or API service availability. The web console and API are requiredto manage the life cycle of the virtual servers. When those services become

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 231

unavailable, customers are unable to provision, start, stop, and deprovisionvirtual servers.
 SLA. Because this factor varies across CSPs, the SLA should be reviewed andreconciled, including exclusion clauses.

 Availability of your virtual servers and the attached storage (persistent andephemeral) for compute services.
 Availability of virtual storage that your users and virtual server depend on for storageservice.

 This includes both synchronous and asynchronous storage access use cases.
Synchronous storage access use cases demand low data access latency andcontinuous availability, whereas asynchronous use cases are more tolerant tolatency and availability. Examples for synchronous storage use cases includedatabase transactions, video streaming, and user authentication. Inconsistencyor disruptions to storage in synchronous storage has a higher impact on overallserver and application availability. A common example of an asynchronous
use case is a cloud-based storage service for backing up your computer overthe Internet.

 Availability of your network connectivity to the Internet or virtual networkconnectivity to IaaS services. In some cases, this can involve virtual private network(VPN) connectivity between your internal private data center and the public IaaS cloud(e.g., hybrid clouds).
 Availability of network services, including a DNS, routing services, and authenticationservices required to connect to the IaaS service.

IaaS health MonitoringThe following options are available to IaaS customers for managing the health of theirservice:
 Service health dashboard published by the CSP.
 CCID (this database is generally community-supported, and may not reflect all CSPsand all incidents that have occurred.
 CSP customer mailing list that notifies customers of occurring and recently occurredoutages.
 Internal or third-party-based service monitoring tools (e.g., Nagios) that periodicallycheck the health of your IaaS virtual server. For example, Amazon Web Services (AWS)is offering a cloud monitoring service called Cloud Watch. This web service providesmonitoring for AWS cloud resources, including Amazon’s Elastic Compute Cloud (EC2).It also provides customers with visibility into resource utilization, operationalperformance, and overall demand patterns, including metrics such as CPU utilization,disk reads and writes, and network traffic.
 Web console or API that publishes the current health status of your virtual servers andnetwork.

Introduction to Grid Computing

Page 232 Under Regulation 2013 Anna University

5.11 Key privacy issues in the cloudPrivacy advocates have raised many concerns about cloud computing. These concernstypically mix security and privacy. Here are some additional considerations to be aware of:
Access

 Data subjects have a right to know what personal information is held and, in somecases, can make a request to stop processing it.
 This is especially important with regard to marketing activities; in some jurisdictions,marketing activities are subject to additional regulations and are almost alwaysaddressed in the end user privacy policy for applicable organizations.
 In the cloud, the main concern is the organization’s ability to provide the individualwith access to all personal information, and to comply with stated requests.
 If a data subject exercises this right to ask the organization to delete his data, will it bepossible to ensure that all of his information has been deleted in the cloud?

Compliance
 What are the privacy compliance requirements in the cloud?
 What are the applicable laws, regulations, standards, and contractual commitmentsthat govern this information, and who is responsible for maintaining the compliance?
 How are existing privacy compliance requirements impacted by the move to the cloud?
 Clouds can cross multiple jurisdictions; for example, data may be stored in multiplecountries, or in multiple states within the United States.
 What is the relevant jurisdiction that governs an entity’s data in the cloud and how is itdetermined? Storage where is the data in the cloud stored? Was it transferred toanother data center in another country? Is it commingled with information from otherorganizations that use the same CSP?
 Privacy laws in various countries place limitations on the ability of organizations totransfer some types of personal information to other countries.
 When the data is stored in the cloud, such a transfer may occur without the knowledgeof the organization, resulting in a potential violation of the local law.

Retention
 How long is personal information (that is transferred to the cloud) retained?
 Which retention policy governs the data?
 Does the organization own the data, or the CSP?
 Who enforces the retention policy in the cloud, and how are exceptions to this policy(such as litigation holds) managed?
 Destruction How does the cloud provider destroy PII at the end of the retentionperiod?
 How do organizations ensure that their PII is destroyed by the CSP at the right pointand is not available to other cloud users?
 How do they know that the CSP didn’t retain additional copies?
 Cloud storage providers usually replicate the data across multiple systems and sites—increased availability is one of the benefits they provide.
 This benefit turns into a challenge when the organization tries to destroy the data—can you truly destroy information once it is in the cloud?

Introduction to Grid Computing

Under Regulation 2013 Anna University Page 233

 Did the CSP really destroy the data, or just make it inaccessible to the organization?
 Is the CSP keeping the information longer than necessary so that it can mine the datafor its own use?

Audit and monitoring
 How can organizations monitor their CSP and provide assurance to relevantstakeholders that privacy requirements are met when their PII is in the cloud?

Privacy breaches
 How do you know that a breach has occurred, how do you ensure that the CSP notifiesyou when a breach occurs.
 Who is responsible for managing the breach notification process (and costs associatedwith the process)?
 If contracts include liability for breaches resulting from negligence of the CSP, how isthe contract enforced and how is it determined who is at fault?

